
A Programming Language for Future Interests

Shrutarshi Basu∗

Nate Foster†

James Grimmelmann‡

Shan Parikh§

Ryan Richardson¶

Learning the system of estates in land and future interests can seem
like learning a new language. Scholars and students must master
unfamiliar phrases, razor-sharp rules, and arbitrarily complicated
structures. Property law is this way not because future interests are
a foreign language, but because they are a programming language.

This Article presents Orlando, a programming language for ex-
pressing conveyances of future interests, and Littleton, a freely avail-
able online interpreter (at https://conveyanc.es) that can diagram
the interests created by conveyances and model the consequences of
future events. Doing so has three payoffs. First, formalizing future
interests helps students and teachers of the subject by allowing them
to visualize and experiment with conveyances. Second, the process
of formalization is itself deeply illuminating about property doctrine
and theory. And third, the computer-science subfield of program-
ming language theory has untapped potential for legal scholarship:
a programming-language approach takes advantage of the linguistic
parallels between legal texts and computer programs.

∗ Postdoctoral Fellow in Computer Science, Harvard University. This work was
supported by NSF Award FMitF-2019313. Versions of this work were presented
at the 2017 Roundtable on Computer Science & Law at the University of Penn-
sylvania, the 2017 Domain-Specific Language Design and Implementation work-
shop, the 2018 Internet Law Works in Progress conference, the 2019 SPLASH
Onward! conference, a 2021 Cornell Law School faculty workshop, and the 2022
ACM Workshop on Programming Languages and Law. We are grateful for their
comments to the participants, and to Aislinn Black, Shawn Bayern, Sara Bronin,
Charles Duan, Kate Klonick, Sarah Lawsky, Denis Merigoux, Christina Mulligan,
Beth Noveck, Paul Ohm, Eduardo Peñalver, Jeremy Sheff, Emily Sherwin, Henry
Smith, Jeffrey Stake, Stewart Sterk, Rebecca Tushnet, Laura Underkuffler, and
Reid Weisbord. This Article is available under the Creative Commons Attribution
4.0 International license, https://creativecommons.org/licenses/by/4.0.

† Associate Professor of Computer Science, Cornell University.
‡ Tessler Family Professor of Digital and Information Law, Cornell University.
§ Software Engineer, Google.
¶ Software Engineer, Oracle.

75

https://conveyanc.es
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

76 A Programming Language for Future Interests 2022

Introduction . 76
I Programming Languages and Law 83

A Contract . 87
B Tax . 89
C Legal Drafting . 91
D Visualization . 93

II An Informal Overview 99
A Previous Work . 100
B Orlando and Littleton 101
C An Example . 106

III The Formal Details 109
A Title Trees . 111
B Semantics . 113
C Conveyances . 118
D Translation . 122
E Conclusion . 123

IV Lessons for Property Law 125
A Design Principles 126

1 Orlando . 126
2 Littleton . 128

B Insights into Property Doctrine 130
1 Defaults . 130
2 Syntactic Ambiguity 132
3 “Theorems” of Property Law 134

C Insights into Property Theory 135
1 The Numerus Clausus 136
2 Recursivity . 138
3 Modularity . 139

Conclusion . 142
Appendix: Orlando Reference 144

Vol. 24 Yale Journal of Law & Technology 77

Introduction

The formulas that govern future interests are similar to
those of chemistry. They seem to be more of the law
of nature than law of men except for one crucial differ-
ence: The rules of future interests occasionally make no
sense.1

Though of feudal origin, it is not a relic of barbarism,
or a part of the rubbish of the dark ages. It is part of a
system; an artificial one, it is true, but still a system, and
a complete one.2

The logician must be rather like a lawyer . . . in the sense
that he is there to give the metaphysician . . . the tense-
logic that he wants, provided that it be consistent. He
must tell his client what the consequences of a given
choice will be . . . and what alternatives are open to
him3

Every law student and every law professor has a different reaction on
reaching the unit on estates in land and future interests in Property.
For some, it is the worst part of the course. They find the system of
reversions, possibilities of reverter, and remainders vested subject to
complete divestment to be an alien language: dull, desiccated, and di-
vorced from the practical realities of the rest of law.4 For others, it is
the best part of the course. Here, there are no counter-arguments and
indeterminate multi-factor tests, only rigorous deduction and clear
right answers.5

1 Daniel B. Bogart, A Casebook for Teaching Teachers: Jesse Dukeminier and
James E. Krier, Property, 22 SEATTLE U. L. REV. 921, 933 (1998).

2 Hileman v. Bouslaugh, 13 Pa. 344, 351 (1850).
3 ARTHUR PRIOR, PAST, PRESENT, AND FUTURE 59 (1967).
4 See, e.g., Palma Joy Strand, We Are All on the Journey: Transforming Antag-

onistic Spaces in Law School Classrooms, 67 J. LEGAL EDUC. 176, 182 (2017)
(“T&E has the reputation of being moldy and covered in cobwebs, akin to and per-
haps even more arcane than the future interests of property law.”); Bogart, supra
note 1, at 935 (“At some point, that teacher will have to train students to do the
hard and frustrating mechanical work of future interests.”).

5 See, e.g., Volume 63 Joint Dedication, 63 S.D. L. REV. i, ix (2018) (statement
of Barry R. Vickrey) (“Some of my most enjoyable times at USD involved dis-
cussions and sometimes debates with Chuck about the most arcane aspects of the

78 A Programming Language for Future Interests 2022

These two groups, polar opposites though they may be in their
approach to law school, share an intuition: there is something logical
and computational about estates and future interests. Whether they
want the computer to serve as a junior associate that calculates the
consequences of conveyances so they don’t have to, or as a sparring
partner that plays along with them, they share the sense that there is
something about this particular system of legal doctrines that makes
them particularly suited for automated algorithmic analysis. A life
estate and a remainder fit together like a lock and a key, with the
mathematical certainty that establishes 2 + 2 = 4. Couldn’t someone
program a computer do this?

We did.
Our system, called Littleton,6 can interpret stylized conveyances

like O conveys to A for life, then if B is married to B, but if B di-
vorces to C and correctly report that B holds a contingent remainder
in fee simple subject to executory limitation. It knows that O holds
an implied reversion; that if B marries while A is alive then B’s re-
mainder is upgraded from contingent to vested subject to complete
divestment; and that if A conveys their interest to D for life, then D’s
interest will be limited to the shorter of A’s and D’s lifetimes. It can
even apply the Rule Against Perpetuities to strike interests that could
vest too remotely.

We designed Littleton to be useful to teachers trying to explain
the system of future interests and to students trying to learn it. We
have put a web version online at https://conveyanc.es. Just type a con-
veyance in the box, click on “Interpret,” and Littleton will display an
easy-to-understand diagram of the resulting interests. It comes with
documentation and a tutorial of demonstration conveyances, and has
been validated against examples drawn from one of the leading stu-
dent guides, Linda Edwards’s Estates in Land and Future Interests.7

law of estates in land and future interests.”); Byron S. White, Tribute to Myres S.
McDougal, 66 MISS. L.J. 1, 2 (1996) (“Future interests a la McDougal was pure
fun.”).

6 After Thomas de Littleton, author of the Treatise on Tenures (ca. 1481–82), an
important codification of the doctrines of estates in land and future interests. See
THOMAS LITTLETON, LITTLETON’S TENURES IN ENGLISH (Eugene Wambaugh ed.,
1903) (1481) (translation of the Tenures and a biographical sketch).

7 LINDA EDWARDS, ESTATES IN LAND AND FUTURE INTERESTS (3rd ed. 2009);
see Shrutarshi Basu, Nate Foster & James Grimmelmann, Property Conveyances
as a Programming Language, 2019 PROC. 2019 ACM SIGPLAN INT’L SYMP. ON
NEW IDEAS NEW PARADIGMS & REFLECTIONS ON PROGRAMMING & SOFTWARE (ON-
WARD!) 128 [hereinafter Property Conveyances] (describing test suite).

https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es

Vol. 24 Yale Journal of Law & Technology 79

We have also placed Littleton’s source code online, and released it un-
der the permissive MIT license, allowing anyone to use and improve
it however they want.8

But that’s not even the interesting part.
Rather than write a program in an existing language to model

future interests, we treated the formalized, ritualized language of first-
year Property conveyances as a programming language itself. Each
term in this language, which we call Orlando,9 has a precisely speci-
fied syntax and semantics. The expression O conveys to A in Orlando
is like x = y * 4 in a traditional programming language like Python,
Java, or C: a command that causes the computer interpreting it to
update its state in a predictable, objectively determined way.

This makes Orlando a domain-specific language (or “DSL”).10

Just like JavaScript is useful for writing interactive web pages, Ink11

and Inform12 and Twine13 for creating text adventure games, Solid-
ity for smart contracts,14 or Flash for animations,15 Orlando is a lan-
guage for expressing property conveyances.

8 See The MIT License, OPEN SOURCE INITIATIVE, https://opensource.org/
licenses/MIT.

9 After Orlando Bridgeman, one of the most important conveyancers in the
common-law tradition, who drafted the instrument at issue in the case that created
the Rule Against Perpetuities. See The Duke of Norfolk’s Case, 22 Eng. Rep. 931
(Ch. 1682); see also VIRGINIA WOOLF, ORLANDO: A BIOGRAPHY (1928); ORLANDO
(Sony Pictures Classics 1992).
10 See generally Arie van Deursen, Paul Klint & Joost Visser, Domain-Specific
Languages: An Annotated Bibliography, SIGPLAN NOTICES., June 2000, at 26
(overview of DSLs); MARTIN FOWLER, DOMAIN-SPECIFIC LANGUAGES (2010) (text-
book on DSL design and implementation).
11 INK, https://www.inklestudios.com/ink/.
12 INFORM 7, http://inform7.com.
13 TWINE, https://twinery.org.
14 SOLIDITY [hereinafter SOLIDITY], https://docs.soliditylang.org.
15 But see Steve Jobs, Thoughts on Flash, APPLE.COM (Apr. 2010), https://web.
archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-
flash/.

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
http://inform7.com
http://inform7.com
http://inform7.com
http://inform7.com
http://inform7.com
http://inform7.com
http://inform7.com
http://inform7.com
https://twinery.org
https://twinery.org
https://twinery.org
https://twinery.org
https://twinery.org
https://twinery.org
https://twinery.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/

80 A Programming Language for Future Interests 2022

Orlando Bridgeman (1606–1674)

Thomas de Littleton (ca. 1407–1481)

Figure 1: Orlando and Littleton’s namesakes

Vol. 24 Yale Journal of Law & Technology 81

Drawing on the computer science discipline of programming
language theory, we treat Orlando like any other DSL.16 Littleton’s
processing is divided into stages:
• First, Littleton parses a conveyance written in Orlando, recogniz-

ing the individual clauses and their relationship.The language O
conveys to A for life, then to B, for example, consists of two
separate grants, linked by then. The first has a quantum (for life)
attached to it; the second does not.

• Next, Littleton creates a data structure (which we call a title tree)
that keeps track of the current interests and their relationships. The
title tree corresponding to

O conveys to A for life, then to B until C marries.

is shown in Figure 2.
• Littleton then applies substantive rules of property law to update

the title tree as further events occur. That is, while the syntax of
Orlando is given by the stylized language used in conveyances, Or-
lando’s semantics are those of property law.

• Littleton analyzes the title tree in accordance with various rules
used by lawyers and law students, so that the various interests can
be properly named. For example, it classifies remainders as con-
tingent or vested based on whether a condition precedent must be
satisfied before that node in the title tree can be reached.

• Finally, Littleton displays the current state of the title by rendering
the title tree in a graphical format that hides many of the internal
details and emphasizes the viable interests and the conditions on
those interests. The resulting visualization is designed to be read-
ily comprehensible to lawyers and law students who need not be
aware of the sophisticated processing taking place under the hood.
Figure 3 shows an example of Littleton’s output.

16 Computer programming is distinct from the field of programming languages.
The former is the engineering practice of implementing useful software systems.
The latter is an academic discipline that studies the characteristics of program-
ming languages themselves, often using mathematical tools. They stand in roughly
the same relationship as legal practice and legal theory. On programming lan-
guages, see generally ROBERT W. SEBESTA, CONCEPTS OF PROGRAMMING LAN-
GUAGES (10th ed. 2012); SHRIRAM KRISHNAMURTHI, PROGRAMMING LANGUAGES:
APPLICATION AND INTERPRETATION (2d ed. Apr. 4, 2017), https://cs.brown.edu/
courses/cs173/2012/book/book.pdf.

https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf

82 A Programming Language for Future Interests 2022

while B does not marry to B

while A is alive to O

to A

Figure 2: Orlando title tree for O conveys to A for life, but if B
marries to B.

Figure 3: Littleton output

Treating conveyances as a programming language yields insights into
property doctrine, into property theory, and into legal theory more
broadly. Doctrinally, Orlando brings the entire system of future inter-
ests into clearer focus by capturing the linguistic structure of property
grants in a succinct and intuitive way. A confusing mess of doctrinal
minutiae resolves itself into an orderly collection of well-specified
rules. Facts about conveyances that previously became apparent only
after detailed study are now immediately obvious—for example, that
a grantor can recursively stack up an indefinite number of successive
life estates. It is even possible to prove “theorems” of property law,
such as that a fee simple is forever.

Theoretically, the fact that this fragment of property law can be
formalized in this way is striking: other areas, like trademark law or
international human rights law, almost certainly cannot. Orlando’s
simple but generative structure provides a new kind of support for a
line of scholarship, associated with Thomas Merrill and Henry Smith
and with the New Private Law movement, that emphasizes the modu-
lar and standardized elements in property’s conceptual structure. For

Vol. 24 Yale Journal of Law & Technology 83

example, Orlando’s design embodies the numerus clausus principle:
that property interests only come in a finite set of forms.

Finally, Orlando is a proof by example that legal scholars can
learn from programming-language theory. Law and programming
languages can be to law and computers as law and linguistics is to
law and language: a subfield that draws on the insight of another dis-
cipline to identify and systematize recurring structures of pervasive
importance to law. The linguistic parallel between the natural lan-
guages of law and the artificial languages of software offers a fresh
way to reflect on how law, lawyers, and legal texts work. In property
and beyond, defining a programming language to model a body of
law should be part of legal scholarship’s methodological toolkit.

This Article provides a detailed exposition of a core subset of
Orlando and Littleton, and a discussion of why they matter to le-
gal scholars.17 Part II introduces Orlando informally; Part III ex-
plains the formal details underneath the surface. Part IV discusses
the design philosophy of Orlando and Littleton to show how they
hold lessons for property law and property theory. And Part I sur-
veys the scattered scholarship applying programming languages to
law to argue that other scholars should consider creating their own
legal DSLs.

I. Programming Languages and Law

Computerizing legal reasoning is by no means new. There is
a long-standing research program on the use of artificial intelligence
(AI) systems for other areas of law. It has proceeded along two tracks,
corresponding to the division within AI between systems using for-
mal logical reasoning, sometimes called “symbolic” AI or “good
old fashioned AI” (or GOFAI), and systems using statistical meth-
ods, sometimes called “subsymbolic AI” or, more recently, “machine

17 See the Conclusion for a list of additional features implemented in the full
versions of Orlando and Littleton.

84 A Programming Language for Future Interests 2022

learning.”18 Legal scholars draw on both tracks.19 Orlando is squarely
in the former tradition, so we focus on it here.

The use of AI systems to automate logical legal reasoning goes
back decades.20 Many scholars, legal-automation companies, and
even teams of students have built “expert systems” that can walk the
user through a questionaire to help them understand the application
of a given body of law to their individual situation.21 These programs

18 For a thorough history of AI discusisng the interplay of these two traditions,
see MARGARET A. BODEN, MIND AS MACHINE: A HISTORY OF COGNITIVE SCIENCE
(2008).
19 See generally KEVIN D. ASHLEY, ARTIFICIAL INTELLIGENCE AND LEGAL AN-
ALYTICS: NEW TOOLS FOR LAW PRACTICE IN THE DIGITAL AGE (2017) (broad
overview of both fields); MICHAEL A. LIVERMORE & DANIEL N. ROCKMORE, LAW
AS DATA: COMPUTATION, TEXT, & THE FUTURE OF LEGAL ANALYSIS (2019) (recent
collection on state of the art in statistical methods); Trevor Bench-Capon, The Need
for Good Old Fashioned AI and Law, in 2020 INT’L TRENDS LEGAL INFORMATICS:
A FESTSCHRIFT FOR ERICH SCHWEIGHOFER 23 (recent discussion of the division).
20 See, e.g., L. Thorne McCarty, Reflections on TAXMAN: An Experiment In Arti-
ficial Intelligence And Legal Reasoning, 90 HARV. L. REV. 837 (1976) [hereinafter
TAXMAN]; John T. Welch, LAWGICAL: An Approach to Computer-Aided Legal
Analysis, 15 AKRON L. REV. 655 (1981); John P .Finan, LAWGICAL: Jurispruden-
tial and Logical Considerations, 15 AKRON L. REV. 675 (1981); Marek J. Sergot,
Fariba Sadri, Robert A. Kowalski, Frank Kriwaczek, Peter Hammond & H. Terese
Cory, The British Nationality Act as a Logic Program, 29 COMM. ACM 370 (1986);
J.M. Trevor Bench-Capon, Gwen O. Robinson, Tom W. Routen & Marek J. Ser-
got, Logic Programming for Large Scale Applications in Law: A Formalisation of
Supplementary Benefit Legislation, in 1987 PROC. 1ST INT’L CONF. ON ARTIFICIAL
INTELLIGENCE & L. 190; Richard S. Gruner, Sentencing Advisor: An Expert Com-
puter System for Federal Sentencing Analyses, 5 SANTA CLARA COMPUTER & HIGH
TECH. L.J. 51 (1989); Cary G. Debessonet & George R. Cross, An Artificial Intelli-
gence Application in the Law: CCLIPS, A Computer Program that Processes Legal
Information, 1 HIGH TECH. L.J. 329 (1986); Phan Minh Dung & Giovanni Sartor,
The Modular Logic of Private International Law, 19 ARTIFICIAL INTELLIGENCE &
L. 233 (2011). For a good survey of the work through the 1980s, see Edwina L.
Rissland, Artificial Intelligence and Law: Stepping Stones to a Model of Legal Rea-
soning, 99 YALE L.J. 1957 (1990); for a more recent surveey see Henry Prakken &
Giovanni Sartor, Law and Logic: A Review From an Argumentation Perspective,
227 ARTIFICIAL INTELLIGENCE 214 (2015). Although through the 1980s much of
this research appeared in general-interest law reviews, most of it is now published
in specialized journals such as Artificial Intelligence and Law.
21 See, e.g., Hellawell, Robert, A Computer Program For Legal Planning And

Analysis: Taxation Of Stock Redemptions, 80 COLUM. L. REV. 1363 (1980) (tax
treatment of stock redemptions); Robert Hellawell, CHOOSE: A Computer Pro-
gram for Legal Planning and Analysis, 19 COLUM. J. TRANSNAT’L L. 339 (1981)

Vol. 24 Yale Journal of Law & Technology 85

range from simple decision trees up through complex tax preparation
software. They are essentially hard-coded versions of a Choose Your
Own Adventure, Mad Libs, or Excel spreadsheet, designed to slot
the user’s answers into the right blanks, with branching and calcula-
tions as needed to handle compound legal rules. More ambitiously,
scholars have used increasingly sophisticated and powerful logics to
model legal rules and sometimes to automate legal analysis.22 These
rule-driven systems typically have a knowledge base of legal rules
encoded in a standard logical form and then use a search strategy to
deductively derive valid legal conclusions on the basis of those rules.
They have greater capacity to make chains of inferences and under-
stand cascading consequences of interacting facts. Research in this
tradition aims not just to understand the doctrines of legal fields, but
also to formalizing the particular concepts of legal reasoning them-
selves, such as the elements of a cause of action, the scope of prece-
dent, burdens of proof and presumptions, defenses, and defeasible
conclusions.23

What is most novel in Orlando and Littleton is the idea that
programming languages have something distinctive to add to this re-
search program.24 To date, law and legal theory have engaged only

(tax planning for mining transactions); Elizabeth Townsend Gard, The Durationa-
tor® Copyright Experiment, in 2013 PROC. MEMORY WORLD DIGITAL AGE: DIG-
ITIZATION & PRESERVATION 46 (copyright durations); Josh Goldfoot, SENTENC-
ING.US: A FREE U.S. FEDERAL SENTENCING GUIDELINES CALCULATOR, https://
www.sentencing.us (federal Sentencing Guidelines calculator). See generally
Richard Gruner, Thinking Like A Lawyer: Expert Systems For Legal Analysis, 1
HIGH TECH. L.J. 259 (1986) (mid-1980s overview of state of the art in legal expert
systems).
22 See, e.g., Layman E. Allen, Symbolic Logic: A Razor-Edged Tool for Drafting
and Interpreting Legal Documents, 66 YALE L.J. 833 (1957) (propositional logic);
TAXMAN, supra note 20 (predicate logic); Sarah B. Lawsky, A Logic for Statutes,
21 FLA. TAX REV. 60 (2017) [hereinafter A Logic for Statutes] (default logic); L.
Thorne McCarty, A Language for Legal Discourse I.: Basic Features, 1989 PROC.
2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE & LAW 180 (modal
logic).
23 See, e.g., A Logic for Statutes, supra note 22; Walter G. Popp & Bernhard
Schlink, Judith, A Computer Program to Advise Lawyers in Reasoning a Case,
15 JURIMETRICS J. 303 (1974); L. KARL BRANTING, REASONING WITH RULES AND
PRECEDENTS: A COMPUTATIONAL MODEL OF LEGAL ANALYSIS (2013); JAMES POP-
PLE, A PRAGMATIC LEGAL EXPERT SYSTEM (1996).
24 A subsidiary point is that by isolating a well-defined fragment of law that is
more amenable to formalization, our approach sidesteps some of the well-known

https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us

86 A Programming Language for Future Interests 2022

intermittently with programming languages.25 By far the most com-
mon point of contact is intellectual property. Whether a computer
program is copyrightable or patentable depends on what a computer
program is, and this is a question that cannot be answered sensibly
without exploring the nature of the programming language it is writ-
ten in.26 Sometimes, it is the language itself that is the subject of
an intellectual property claim, as in Google v. Oracle.27 Similar is-
sues arise in determining the scope of First Amendment coverage for
software; the linguistic aspects of software are inescapable.28

In this Part, we sketch the engagement of law with program-
ming languages in four: law, contract law, tax law, legal drafting,
and visualization of law. What unites them is that in each domain,
legal scholars have made meaningful progress by expressing legal re-
lationships as a programming language. Sometimes they have used
existing languages; sometimes they have created their own. In the

challenges to the expert-systems approach to law. See Philip Leith, The Rise and
Fall of the Legal Expert System, 30 INT’L REV. L. COMPUTERS & TECH. 94 (2016).
25 But see Antônio Carlos da Rocha Costa, Situated Legal Systems and Their Op-
erational Semantics, 23 ARTIFICIAL INTELLIGENCE & L. 43 (2015) (presenting am-
bitious operational semantics of Hans Kelsen’s theory of legal systems).
26 See generally Pamela Samuelson, Randall Davis, Mitchell D. Kapor & Jerome
H. Reichman, A Manifesto Concerning the Legal Protection of Computer Pro-
grams, 94 COLUM. L. REV. 2308 (1994); Pamela Samuelson, Functionality and
Expression in Computer Programs: Refining the Tests for Software Copyright In-
fringement, 31 BERKELEY TECH. L.J. 1215 (2016); BEN KLEMENS, MATH YOU
CAN’T USE: PATENTS, COPYRIGHT, AND SOFTWARE (2005); Peter D. Junger, You
Can’t Patent Software: Patenting Software Is Wrong, 58 CASE W. RES. L. REV.
333 (2007); Sebastian Zimmeck, Patent Eligibility of Programming Languages
and Tools, 13 TUL. J. TECH. & INTELL. PROP. 133 (2010).
27 Oracle Am., Inc. v. Google LLC, 886 F.3d 1179 (Fed. Cir. 2018). See generally
Dennis S. Karjala, Oracle v. Google and the Scope of a Computer Program Copy-
right, 24 J. INTELL. PROP. L. 1 (2016); Marci A. Hamilton & Ted Sabety vol, Com-
puter Science Concepts in Copyright Cases: The Path to a Coherent Law, 1997
HARV. J.L. & TECH. 239; Richard H. Stern, Copyright in Computer Programming
Languages, 17 RUTGERS COMPUTER & TECH. L.J. 321 (1991). See also Michael
Adelman, Constructed Languages and Copyright: A Brief History and Pooposal
for Divorce, 27 HARV. J.L. & TECH. 543 (2013) (copyright in constructed natural
languages).
28 See, e.g., Lee Tien, Publishing Software As A Speech Act, 15 BERK. TECH. L.J.
629 (2000).

Vol. 24 Yale Journal of Law & Technology 87

right domains, this is a useful tool for gaining insights into legal doc-
trines and concepts.29

A. Contract

Contract law is a good doctrinal fit for what programming lan-
guages can do.30 Parties enjoy substantial autonomy to customize the
terms of their contractual obligations, so the flexibility offered by pro-
gramming languages is appealing. At the same time, contracting par-
ties often want certainty about the meaning and effects of their con-
tracts, so the clarity and precision of programming languages is also
appealing. Thus, several scholars have disccussed the prospects for
expressing contract terms directly in computer-standardized forms.31

From the computer-science side, there has been extensive work on
finding appropriate logics to model contractual relationships.32

One notable project in using programming-language theory to
model contracts is 2000’s Composing Contracts: An Adventure in
Financial Engineering by Simon Peyton Jones, Jean-Marc Eber, and
Julian Seward.33 It describes a carefully crafted library of primi-
tive operators to model option contracts. Once standard contracts
are encoded in this way, it becomes possible to do sophisticated fi-
nancial analyses on them automatically, for example, computing the
expected value of a contract that depends on changes in interest rates
29 We leave for another day the broader jurisprudential questions of what law and
legal theory can learn from programming languages in general.
30 See Harry Surden, Computable Contracts, 46 U.C. DAVIS L. REV. 629 (2012);
see also Erik F. Gerding, Contract as Pattern Language, 88 WASH. L. REV.
1323 (2013). Surden describes contracts that have been expressed in computer-
processable form as “data-oriented,” which captures the fact that every computer
program, by virtue of the fact that it can be stored on and processed by a computer,
is also data. The duality between code and data is central to computer science.
31 See Surden, supra note 30; Lawrence A. Cunningham, Language, Deals, and
Standards: The Future of XML Contracts, 84 WASH. U. L. REV. 313 (2006). For a
recent survey of approaches, see Developing a Legal Specification Protocol.
32 E.g., Shaun Azzopardi, Gordon J. Pace, Fernando Schapachnik & Gerardo
Schneider, Contract Automata, 24 ARTIFICIAL INTELLIGENCE & L. 203 (2016).
33 Simon Peyton Jones, Jean-Marc Eber & Julian Seward, Composing Contracts:

An Adventure in Financial Engineering, 2000 ICFP0́0 280; see also Patrick Bahr,
Jost Berthold & Martin Elsman, Certified Symbolic Management of Financial
Multi-Party Contracts, in 2015 PROC. 20TH ACM SIGPLAN INT’L CONF. ON FUNC-
TIONAL PROGRAMMING 315; Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob
Grue & Christian Stefansen, Compositional Specification of Commercial Con-
tracts, 8 INT’L J. ON SOFTWARE TOOLS FOR TECH. TRANSFER 485 (2006).

88 A Programming Language for Future Interests 2022

over time. There are now dozens of domain-specific languages for
contracts.34

This approach is reflected in Orlando. Although property is a
different problem domain than contracts, we followed Composing
Contracts’s design principle of finding a minimal set of simple or-
thogonal primitive operators in creating the set of title tree nodes.35

We also adopted a similar language choice; Composing Contracts’s
system is implemented in Haskell, which like OCaml is a strongly
typed polymorphic functional language with pattern-matching.36

More recently, there has been an explosion of interest in creating
“smart” “contracts.” 37 These are programs that adjust the relation-
ship between multiple parties and various resources automatically.
Programs require programming languages, which are supported by
a blockchain or other digital platform. These platforms typically
have a basic virtual machine—effectively a shared, simulated, ab-
stracted computer—and one or more general-purpose programming
languages.38 Numerous groups interested in developing applications
that can displace the need for traditional legal contracts, or integrate
smoothly with legal contracts, have created special-purpose program-
ming languages specifically for encoding contractual rights and obli-
gations.39

34 See FIN. DOMAIN-SPECIFIC LANGUAGE LISTING, http: / /www.dslfin.org /
resources.html (directory of projects).
35 See Shrutarshi Basu, Anshuman Mohan, Nate Foster, & James Grimmelmann,
Legal Calculi, in 2022 PROGRAMMING LANGUAGES & L. (PROLALA) (discussing
this design principle for legal programming languages).
36 There is another line of influence here. The OCaml libraries Littleton is built

with are developed and maintained by Jane Street Capital, a quantitative trading
firm. See Yaron Minsky & Stephen Weeks, Caml Trading: Experiences with Func-
tional Programming on Wall Street, 18 J. FUNCTIONAL PROGRAMMING 553 (2008)
(describing Jane Street’s adoption of OCcaml).
37 See generally Shaanan Cohney & David A. Hoffman, Transactional Scripts in
Contract Stacks, 105 MINN. L. REV. 319 (2020); Usha R. Rodrigues, Law and
the Blockchain, 104 IOWA L. REV. 679 (2018); Jason G. Allen, Wrapped and
Stacked: ‘Smart Contracts’ and the Interaction of Natural and Formal Language,
14 EUR. REV. CONT. L. 307 (2018); Lauren Henry Scholz, Algorithmic Contracts,
20 STAN. TECH. L. REV. 128 (2017); Kevin Werbach & Nicolas Cornell, Contracts
Ex Machina, 67 DUKE L.J. 313 (2017).
38 E.g., SOLIDITY, supra note 14.
39 See, e.g., LEGALESE, https://legalese.com; OPENLAW, https://www.openlaw.
io; ACCORD PROJECT, https://docs.accordproject.org; see also Shaun Azzopardi,
Gordon J. Pace & Fernando Schapachnik, On Observing Contracts: Deontic Con-
tracts Meet Smart Contracts, in 2018 PROC. 31ST INT’L CONF. ON LEGAL KNOWL-

http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
https://legalese.com
https://legalese.com
https://legalese.com
https://legalese.com
https://legalese.com
https://legalese.com
https://legalese.com
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org

Vol. 24 Yale Journal of Law & Technology 89

Note, however, that expressing a contract in a programming lan-
guage does not solve all of the problems of contract law. Interpreta-
tion and enforcement remain real problems,40 programing languages
can be inferior to natural languages in capturing the nuances of par-
ties’ relationships,41 and turning contracts into programs means that
contracts are all but certain to have bugs, too.42

B. Tax

Tax law is also a good fit for programming languages, but for
slightly different reasons. Here, the goal of formalization is typi-
cally to express existing legal rules in as much detail and with as
little ambiguity as possible. The underlying rules, more so than in
any other area of law, are already computational; a tax code is in
large part simply a statement of computations to be applied to a tax-
payer’s activities. It is not entirely a coincidence that one of the ear-
liest notable attempts at formalizing statutory law was Thorne Mc-
Carty’s TAXMAN, which modeled the tax treatment of corporate
reoganizations—although ironically, McCarty selected this particu-
lar topic because it was unlike other parts of tax law in being more
open-ended and indeterminate.43

Several tax scholars have deal with linguistic themes in formaliz-
ing tax law. Sarah Lawsky proposes using formalized logical models

EDGE & INFO. SYSTEMS (JURIX 2018) 21 (linking smart contracts to deontic
logic); Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu & Zengxiang Li, A Sur-
vey of Smart Contract Formal Specification and Verification (2020) (unpublished
manuscript), https://arxiv.org/abs/2008.02712 (survey of methods for verifying
smart contracts, including for adherence to a legal specification); Jan Ladleif &
Mathias Weske, A Unifying Model of Legal Smart Contracts, in 2019 PROC. INT’L
CONF. ON CONCEPTUAL MODELING 323 (comparison of smart-contract specifica-
tion support for legal desiderata).
40 See James Grimmelmann, All Smart Contracts Are Ambiguous, 2 J.L. & INNO-
VATION 1, 19—22 (2019).
41 See Karen E.C. Levy, Book-Smart, not Street-Smart: Blockchain-Based Smart
Contracts and the Social Workings of Law, 3 ENGAGING SCI. TECH. & SOC’Y 1,
4—10 (2017).
42 See Shaanan Cohney, David Hoffman, Jeremy Sklaroff & David Wishnick,
Coin-Operated Capitalism, 119 COLUM. L. REV. 591, 634—39 (2019).
43 TAXMAN, supra note 20; see also David M. Sherman, A Prolog Model of the
Income Tax Act of Canada, in 1987 PROC. 1ST INT’L CONF. ON ARTIFICIAL INTEL-
LIGENCE & L. 127; Kathryn E. Sanders, CHIRON: Planning in an Open-Textured
Domain, 9 ARTIFICIAL INTELLIGENCE & L. 225 (2001).

https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712

90 A Programming Language for Future Interests 2022

to make drafters more attentive to problems of definitional scope,44

and her work on modeling statutes using default logic is grounded
in tax law.45 In other work, she observes that existing tax forms are
in effect a sub silentio formalization of the tax code; they give con-
crete algorithmic form to the legal requirements of the code.46 In
the other direection, several research groups are working on using
natural-language techniques to parse the tax code and extract a for-
malized underlying structure.47

Another striking use of formal programming-language methods
in law is an ongoing overhaul of the tax computation software used
by the French Public Finances Directorate (DGFiP).48 It is common
for governments to automate tax and other computations with soft-
ware; whether the DGFiP’s 125,000 lines of custom-written software
correctly implements the 3,500-page French tax code is another and
harder question. A research group working with the DGFiP are help-
ing it transfer its software into a language with precise formal seman-
tics so that parts of its algorithms can be proven correct and other
parts subjected to better public auditing. In areas like tax where the
computational parts of legal rules can be stated with high precision,
formal methods drawn from programming-language theory are use-
ful in reducing the gap between law on the books and law on the
server.

44 Sarah B. Lawsky, Formalizing the Code, 70 TAX L. REVIEEW 377 (2016).
45 A Logic for Statutes, supra note 22; Sarah Lawsky, Nonmonotonic Logic
and Rule-Based Legal Reasoning (2017) (unpublished manuscript), https: / /
escholarship.org/uc/item/59j2j45w; Marcos A. Pertierra, Sarah Lawsky, Erik
Hemberg & Una-May O’Reilly, Towards Formalizing Statute Law as Default Logic
through Automatic Semantic Parsing, in 2017 PROC. SECOND WORKSHOP ON AU-
TOMATED SEMANTIC ANALYSIS INFO. LEGAL TEXT.
46 Sarah Lawsky, Form as Formalization, 16 OHIO ST. TECH. L.J. 114 (2020); see
also Richard J. Kovach, Application of Computer-Assisted Analysis Techniques to
Taxation, 15 AKRON L. REV. 713 (1981).
47 Nils Holzenberger, Andrew Blair-Stanek & Benjamin Van Durme, A Dataset
for Statutory Reasoning in Tax Law Entailment and Question Answering, in 2020
PROC. 2020 NAT. LEGAL LANGUAGE PROCESSING (NLLP) WORKSHOP; Pertierra,
Lawsky, Hemberg & O’Reilly, supra note 45.
48 Denis Merigoux, Raphaël Monat & Jonathan Protzenko, A Modern Com-
piler for the French Tax Code (2020) (unpublished manuscript), https://arxiv.org/
abs/2011.07966.

https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966

Vol. 24 Yale Journal of Law & Technology 91

C. Legal Drafting

The process of expressing conveyances in Orlando’s specific
syntax exposes users (gently) to the discipline of programming. It
invites them to think about what legal outcomes they are trying to
achieve and then come up with specific expressions to generate those
outcomes. In other words, using Littleton is a kind of legal drafting.
Writing Orlando conveyances is a kind of programming that may help
develop the same kinds of skills that are useful in legal drafting of
all sorts. (Again, Littleton’s ability to provide instant feedback may
be particularly useful.)

The parallel between programming and drafting is of scholarly
interest, too.49 There is a large literature on the kinds of legal rules
that can and cannot be made precisely computable, and on the con-
sequences of doing so.50 Some of this work engages with the tools
that legal drafters use. For highly standardized instruments, such
as wills, early expert systems and modern services like LegalZoom
have worked to computerize the process of filling in an appropriate
template from a legal formbook. Some such projects are one-offs:
systems purpose-built to generate a particular kind of formulaic doc-
ument, such as UCC financing statements.51 Others are designed to
work with multiple kinds of forms, which means that the templates
themselves must be specified in a domain-specific language.52

More ambitiously, some projects hybridize the drafting process
so that users are essentially drafting a natural-language legal text and
an exact computational model of that text in parallel. Constraining
the form of drafts in this way in essence compels the drafter to be-
come a programmer of the specialized format being used. In some

49 See Houman B. Shadab, Software is Scholarship (2020) (unpublished
manuscript), https: / / papers.ssrn.com / sol3 / Papers.cfm ? abstract_id=3632464;
Ohm, Paul, Computer Programming and The Law: A New Research Agenda, 54
VILANOVA L. REV. 117 (2009); Grimmelmann, supra note 40.
50 See Frank Pasquale & Glyn Cashwell, Four Futures of Legal Automation, 63
UCLA L. REV. DISCOURSE 26 (2015); Surden, supra note 30; William McGeveran,
Programmed Privacy Promises: P3P and Web Privacy Law, 76 N.Y.U. L. REV.
1812 (2001).
51 William E. Boyd & Charles S Saxon, The A-9: A Program for Drafting Security

Agreements Under Article 9 of the Uniform Commercial Code, 6 L. & SOC. INQUIRY
639 (1981).
52 E.g., Charles S. Saxon, Computer-aided Drafting of Legal Documents, 7 L. &
SOC. INQUIRY 685 (1982). For a recent survey of efforts at legal specification see
Developing a Legal Specification Protocol.

https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464

92 A Programming Language for Future Interests 2022

cases, such as the software used by legislative drafters to produce
properly numbered and formatted statutes and track amendments, the
constraints are relatively weak.53 But other research efforts “force
the attorney or paraprofessional to proceed in a highly organized fash-
ion . . . so that the computer, and not the attorney or paraprofessional,
keeps track of the complex linkages between the elements of the sys-
tem as it evolves.” This is not quite a programming language; rather it
is a “controlled” or “normalized” language in which some elements,
such as conjunctions and deontic expressions of obligation, have pre-
cisely defined meanings.54 Some scholars in this tradition recognize
and embrace the idea that they are making the language of law more
like a programming language, and are thoughtful about the language-
design issues involved.55

Similarly, other authors describe the legal drafting of documents
that are semi-structured.56 These documents are not themselves pro-
grams; they consist mostly of natural language. But key terms are
marked where they appear with specific tags indicating that they are
being used consistently throughout, are referring to identified other
sections, or other specified meanings designed to reduce ambiguity.
This is similar to what legal research services already do when they
hyperlink citations to the cited source and cross-reference defined
terms in statutes to the sections where they are defined, except that
it is carried out by the drafters themselves as a discipline for avoid-
ing mistakes, making their meaning clearer to readers, and enabling
limited automated analysis.57

53 LEGISPRO, https://xcential.com; OPEN L. DRAFT, https://www.openlawlib.
org/platform/open-law-draft/. See generally TIMOTHY ARNOLD-MOORE, AD-
VANCED TOOLS FOR LEGISLATION (2019), https: / / ial -online.org /wp-content /
uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
(discussing functions performed by legislative drafting software).
54 See, e.g., Layman E. Allen & C. Rudy Engholm, Normalized Legal Drafting
and the Query Method, 29 J. LEGAL EDUC. 380 (1977); James A. Sprowl, Automat-
ing The Legal Reasoning Process: A Computer that Uses Regulations and Statutes
to Draft Legal Documents, 4 L. & SOC. INQUIRY 1 (1979).
55 E.g., Sprowl, supra note 54; Thomas F. Blackwell, Finally Adding Method to
Madness: Applying Principles of Object-Oriented Analysis and Design to Legisla-
tive Drafting, 3 NYU. J. LEGIS. & PUB. POL’Y 227 (2000).
56 A Logic for Statutes, supra note 22; Matthew Roach, Toward A New Language
Of Legal Drafting, 17 J. HIGH TECH. L. 43 (2016).
57 Also worth of note is Lynn LoPucki’s VisiLaw, in which statutory texts are
marked up with standardized symbolic annotations to make their grammatical stru-
ture clearer. See VISILAW, https://www.visilaw.com.

https://xcential.com
https://xcential.com
https://xcential.com
https://xcential.com
https://xcential.com
https://xcential.com
https://xcential.com
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com

Vol. 24 Yale Journal of Law & Technology 93

Another interesting line of researcch draws on ideas from soft-
ware engineering to improve legal drafting at a slightly higher level of
abstraction. These scholars observe how programmers develop com-
plex high-quality programs through specific design practices, such
as packaging discrete units of functionality into self-contained “ob-
jects,” and suggest ways that legal drafters could realize some of the
same benefits by adopting similar practices.58 Of particular inter-
est here, these practices are typically supported by the programming
languages that these developers work in. For example, an “object-
oriented” language is precisely one that has built-in features for di-
viding functionality into discrete and self-contained objects.

Another such technique is “literate programming,” in which a
program is interwoven with its documentation.59 A few authors have
proposed literate programming specfically for implementing compu-
tational versions of statutes.60 Again, the linguistic parallel between
legal text and computer program is evident.

D. Visualization

Generations of Property teachers have sketched diagrams of fu-
ture interests for their students. A few of them have done so in a rea-
sonably systematic way and published their diagrams. Most closely
on point is Roger Anderson’s catalog of geometric shapes for various
future interests, such as a square for a life estate and a triangle with
a dot in it for a reversion in fee simple.61 Hopperton, for his part,
illustrated his step-by-step analysis with a two-page summary chart
of different estates.62

58 See Gerding, supra note 30.
59 See Knuth, Donald Ervin, Literate Programming, 27 COMPUTER J. 97 (1984).
60 See also Denis Merigoux & Liane Huttner, Catala: Moving Towards the Fu-
ture of Legal Expert Systems (2020) (unpublished manuscript), https://hal.inria.
fr/hal-02936606/document; Ohm, supra note 49 (discussing relevance of literate
programming to law, in the form of a law-review article that is also a computer
program).
61 Roger W. Andersen, Present and Future Interests: A Graphic Explanation, 19
SEATTLE U. L. REV. 101 (1995).
62 Robert J. Hopperton, Teaching Present and Future Interests: A Methodology
for Students that Unifies Estates in Land Concepts, Structures, and Principles, 26
U. TOL. L. REV. 621 (1994) [hereinafter Teaching Present and Future Interests].

https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document

94 A Programming Language for Future Interests 2022

Figure 4: Anderson’s future-interest diagrams

Further afield, Mark Reutlinger described timelines of events
relevant to a RAP analysis,63 William H. Lawrence explained the
use of diagrams to summarize commercial-paper transactions,64 and
William M. Richman used diagrams to map the facts in conflict-of-
laws cases.65 And there is a tradition going back to Wigmore of using
diagrams to present the logical structure of legal arguments.66

What unites these legal diagrams is their attempt to be consis-
tently rule-bound about what elements their diagrams include and
how they are arranged. The synergy with computational law is ob-
vious: in recent years scholars have developed systems to generate
a variety of illuminating visualizations algorithmically.67 The most

63 Mark Reutlinger, When Words Fail Me: Diagramming The Rule Against Per-
petuities, 59 MO. L. REV. 157 (1994).
64 William H Lawrence„ Diagramming Commercial Paper Transactions, 52
OHIO ST. L.J. 267 (1991).
65 William M Richman, Diagramming Conflicts: A Graphic Understanding of
Interest Analysis, 43 OHIO ST. L.J. 317 (1982); William M. Richman, Graphic
Forms in Conflict of Laws, 27 U. TOL. L. REV. 631 (1995); cf. Dung & Sartor,
supra note 20 (formal logic for choice of law).
66 See John H. Wigmore, The Problem of Proof, 8 ILL. L.R. 77 (1913). See gen-
erally Chris Reed, Douglas Walton & Fabrizio Macagno, Argument Diagramming
in Logic, Law and Artificial Intelligence, 2007 KNOWLEDGE ENGINEERING REV. 1
(tracing history).
67 See, e.g., Daniel Martin Katz & Michael James Bommarito, Measuring the
Complexity of the Law: The United States Code, 22 ARTIFICIAL INTELLIGENCE &
L. 337 (2014) (hierarchical diagrams of the United States Code); The Supreme
Court Mapping Project, U. BALT., https://law.ubalt.edu/faculty/scotus-mapping/
index.cfm (timelines of precedent in Supreme Court cases); Joseph Scott Miller,

https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm

Vol. 24 Yale Journal of Law & Technology 95

Figure 5: Reutlinger’s RAP timelines

ambitious work linking visualizing computable representations of le-
gal relationships comes from contract law, where there have been var-
ious attempts to add visualizations to formalizations of contracts.68

Programming lanagues add another arrow to the quiver by de-
scribing a useful way to do visualization. As in Littleton, the human-
readable “program” of a legal text, its digital representation as an
abstract data structure, and its graphical visualization are three dif-
ferent views of the same object. Shawn Bayern’s work on parsing
conveyances does a version of this; it generates simple and elegant
diagrams.69

Legal scholars looking for interesting ways to visualize legal law
should consider writing a legal DSL for their domain of interest, and
then exploring different ways of interpreting programs in that DSL to
generate diagrams. Figure 11 shows an earlier version of our title-tree
diagrams, in which → nodes were explicit as nodes. By separating
the translation code that generates title trees from the graphical code
that transforms them into diagrams, we were able to experiment with
different visualizations without having to rewrite any of Littleton’s
core syntactic and semantic logic.

Law’s Semantic Self-Portrait: Discerning Doctrine with Co-Citation Networks and
Keywords, 81 U. PITT. L. REV. 1 (2019) (networks of related Supreme Court cases).
68 See, e.g., John J. Camilleri, Gabriele Paganelli & Gerardo Schneider, A CNL
for Contract-Oriented Diagrams, 2014 CONTROLLED NAT. LANGUAGE 135.
69 Shawn Bayern, CONVEYANCE INTERPRETER [hereinafter Conveyance Inter-
preter], https://essentially.net/property/.

https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/

96 A Programming Language for Future Interests 2022

Figure 6: The first half of Hopperton’s summary chart of future in-
terests

Vol. 24 Yale Journal of Law & Technology 97

Figure 7: Richman’s’ conflict-of-laws diagrams

Figure 8: Lawrence’s commercial-paper diagrams

Figure 9: Wigmore’s argument diagrams

98 A Programming Language for Future Interests 2022

Figure 10: Camilleri, Paganelli, and Schneider’s diagrams of formal-
ized contracts

Figure 11: A previous version of Orlando visualizations

Vol. 24 Yale Journal of Law & Technology 99

Figure 12: Bayern’s’ automatically generated future-interest dia-
grams

II. An Informal Overview

Only a few projects in formalizing law deal with property law,70

and most of those focus on logical decomposition of the idea of rights
in a thing, rather than with the specifics of future interests.71 There
are, however, a few notable exceptions. This Part surveys the prior
work on formalizing property law, and then explains the approach
taken in Orlando.

70 John Zeleznikow, Andrew Stranieri & Mark Gawler, Project Report: Split-Up–
A Legal Expert System Which Determines Property Division upon Divorce, 3 ARTI-
FICIAL INTELLIGENCE & L. 267 (1995) (division of property on divorce); Donald H.
Berman & Carole D. Hafner, Representing Teleological Structure in Case-Based
Legal Reasoning: The Missing Link, 1993 PROC. 4TH INT’L CONF. ON ARTIFICIAL
INTELLIGENCE & L. 50 (first possession); Trevor Bench-Capon, Arguing with Di-
mensions in Legal Cases, 2017 18TH WORKSHOP ON COMPUTATIONAL MODELS NAT.
ARGUMENT 2 (same); Katie Atkinson, Introduction to Special Issue on Modelling
Popov v. Hayashi, 20 ARTIFICIAL INTELLIGENCE & L. 1 (2012) (same); Sanders,
supra note 43 (types of property transactions).
71 L. Thorne McCarty, Ownership: A Case Study in the Representation of Le-
gal Concepts, 10 ARTIFICIAL INTELLIGENCE & L. 135 (2002); see also Layman E.
Allen„ Formalizing Hohfeldian Analysis to Clarify the Multiple Senses to Legal
Right: A Powerful Lens for the Electronic Age, 48 S. CAL. L. REV. 428 (1974)
(initial entry in decades-long project to formalize Hohfeldian relationships).

100 A Programming Language for Future Interests 2022

A. Previous Work

In 1988, John Finan and Albert Leyerle described a program
called Perp Rule, for testing future interests for compliance with the
RAP.72 Perp Rule asked users a series of yes/no questions such as,
“IS THERE ANY POSSIBILITY THAT THE CLASS COULD IN-
CREASE IN SIZE BY THE BIRTH OF A NEW MEMBER?” and
also, “ARE ANY ONE OR MORE MEMBERS OF THE CLASS
ENTITLED TO IMMEDIATE DISTRIBUTION OF THE PRINCI-
PAL?”73 As these examples, show, Perp Rule dealt with different
aspects of the RAP than Littleton currently does. More importantly,
Perp Rule was incapable of answering these questions for itself; it had
to ask the user to do the necessary analysis at each step. In essence,
it was an elementary expert system for walking the user through a
decision tree that models the RAP. 74

In 1989, David Becker also attacked the RAP with an aston-
ishingly detailed step-by-step procedure for analyzing compliance.75

His article runs to an astonishing 187 pages and nearly 100,000 words.
Becker’s “methodology” shows how formalization can exert a disci-
plining effect. It forthrightly confronts many of the details and spe-
cial cases that a more casual treatment can sweep under the rug. But
unlike Finan and Leyerle, Beccker made no attempt to actually imple-
ment it as a program. Indeed, the article does not even contemplate
that computerization might be possible or desirable. As a result, the
procedure is riddled with “exceptions,” “observations,” and “adjust-
ments.” Robert Hopperton, in articles published in 1994 and 1999,
also attempted to impose greater logical structure on the teaching of
future interests and the RAP.76 And a few professors have created

72 John P. Finan & Albert H. Leyerle, The Perp Rule Program: Computerizing
the Rule Against Perpetuities, 28 JURIMETRICS J. 317 (1988).
73 Id. at 328–29.
74 Id. at 325. The full version of Littleton implements a significantly more so-
phisticated RAP algorithm. But that is a tale for another time.
75 David M. Becker, A Methodology for Solving Perpetuites Problems under the
Common Law Rule: A Step-by-Step Process that Carefully Identifies All Testing
Lives in Being, 67 WASH. U. L.Q. 949 (1989).
76 Teaching Present and Future Interests, supra note 62; Robert J. Hopperton,
Teaching the Rule against Perpetuities in First Year Property, 31 U. TOL. L. REV.
55 (1999).

Vol. 24 Yale Journal of Law & Technology 101

interactive study aids, some of which can generate problems for stu-
dents to try.77

In 2010, Shawn Bayern wrote a conveyance interpreter in the
Java programming language.78 Like Littleton, Bayern’s interpreter
parses a conveyance written in English, displays a diagram of the
resulting interests, and is capable of naming most of the standard in-
terests taught in First-year property. Bayern’s was the first formal
treatment to truly capture the recursive linguistic structure of stan-
dard conveyances; his interpreter can parse conveyances containing
an arbitrary number of clauses. In addition, its linguistic analysis of
granting clauses is quite insightful; it clearly distinguishes conditions
precedent, durations, and limitations.

Orlando and Littleton build on Bayern’s work by linking an in-
terpreter to a language with precisely specified syntax and semantics.
That clean and well-theorized core enables it to (1) interpret a wider
range of constructions, (2) handle more complicated interrelation-
ships among conditions, (3) update the state of title in response to
events and subsequent conveyances, (4) reason formally about future
events (and thus about vesting and the Rule Against Perpetuties), (5)
and clarify important property concepts. In short, Orlando and Lit-
tleton provide a firm theoretical foundation for systematic research in
a new field for which Bayern developed the initial proof of concept.

B. Orlando and Littleton

More precisely, Orlando deals with conveyances like “O con-
veys to A and her heirs.” The actual language used by lawyers past

77 Lawsky Practice Problems, LAWSKYPRACTICEPROBLEMS.ORG, https://www.
lawskypracticeproblems.org; Peter B. Maggs & Thomas D. Morgan, Computer-
Based Legal Education at the University of Illinois: A Report of Two Years’ Expe-
rience, 27 J. LEGAL EDUC. 138 (1975); John A. Humbach, EST. SYS. & BASIC FU-
TURE INTERESTS (2010), http://webpage.pace.edu/jhumbach/BES00page-Gateway.
htm; Ned Snow, FUTURE INTERESTS MADE SIMPLE (2015), https://apps.apple.
com/us/app/future-interests-made-simple/id933368390; see also FUTURE INTER-
ESTS APPLICATION (defunct), https://web.archive.org/web/20180820192604/http://
www.futureinterestsapp.com/; RULE AGAINST PERPETUITIES APPLICATION (de-
funct), https://web.archive.org/web/20180827233129/http://www.rapapp.info/.
78 Conveyance Interpreter, supra note 69. Bayern documented it in a short con-
ference article. Shawn J. Bayern, A Formal System for Analyzing Conveyances of
Property Under the Common Law, 23 JURIX 139 (2010). We are also grateful to
Bayern for making available the source code to his interpreter, from which we have
learned much, even though we ultimately made very different design decisions.

https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/

102 A Programming Language for Future Interests 2022

while A is alive to B

to A

Figure 13: to A for life, then to B and her heirs

and present is more complicated, but when explaining the system, it
is customary to write stylized conveyances like this one. For simplic-
ity, we will omit the “O conveys” part when it is clear from context.
In addition, we will write the conveyances in a distinctive fixed-width
typeface—e.g., to A and his heirs—when they follow the rules of
Orlando’s formal syntax, rather than than the looser standards of le-
gal English. Orlando specifies, and Littleton carries out, a translation
of a conveyance into a data structure called a title tree. As an initial
example, Figure 13 shows the title tree for to A for life, then to B
and her heirs.

This picture contains nodes to represent A and B’s interests and
the relationship between them:
• Two are “to” nodes that represent their ownership interests. Each

of them consists of the keyword to plus the name of the person who
owns the interest: A and B, respectively.79

• One is a“while” node that describes the circumstances under which
another interest terminates. A while has a condition (here “A is
alive”) and a vertical line downwards to whatever interest should
be terminated when that condition becomes false (here, A’s).

• Finally, the horizontal→ arrow from thewhile to B’s interest shows
what order their interests come in. Note that the arrow starts at the
while node, not at the to node beneath it.80

Initially, while the condition “A is alive” is true, A’s interest is pos-
sessory. But when the condition becomes false, the while terminates
A’s interest and B’s interest becomes possessory. Thus, this picture
as a whole shows a life estate followed by a remainder. The while and
the to A beneath it are a unit—a subtree—that as a whole represents
A’s life estate. The to B represents B’s remainder.

Note that nothing in the tree is labeled a “life estate” or a “re-
mainder.” Indeed, the entire concept of “life estate” takes more than
79 These to nodes are displayed in a box to visually distinguish them and empha-
size that they corresponds to ownership interests.
80 Formally, this kind of arrow is another type of node. See infra III.

Vol. 24 Yale Journal of Law & Technology 103

while A is alive while B is alive to C

to A to B

Figure 14: to A for life, then to B for life, then to C

while A is alive while B is alive while C is alive to D

to A to B to C

Figure 15: To A for life, then to B for life, then to C for life,
then to D

one node to represent, and the only reason we can recognize to B as
a “remainder” is because of where it appears in the tree as a whole.
This is fundamental to the design of Orlando. Rather than have sepa-
rate types of nodes for every distinctly named type of interest, it uses
a small set of node types to model the behavior of interests: who is
entitled to possession under what circumstances.

In Orlando, both the language of conveyances and the structure
of title trees are recursive. They are built up from smaller parts. The
conveyance to A for life, then to B for life, then to C and
his heirs adds an additional granting clause; it creates two life es-
tates, rather than one. This additional granting clause becomes an
additional “life estate” in the resulting title tree: additional while and
to node, as shown in Figure 14. The process can be extended indefi-
nitely. Figure 15 shows three successive life estates and a remainder.
For four, five, six, or more, all one needs is a big enough piece of
paper.

Time, and possession, flow from left to right in a title tree. In
Figure 14, possession will start at A’s interest at the left, then move
to B’s interest in the center, and ultimately to C’s interest at the right.
Imagine putting your finger on the currently possessory interest and
moving it forward as time passes and the state of title changes. Your
finger will move only forward to the right, never backwards to the
left against the direction of an arrow. This means that any interests
to the left of your finger are irrelevant to the state of title; they can
never become possessory.

Thus, Littleton discards all nodes in the “past,” to the left of the
currently possessory interest. When a node terminates, it is removed

104 A Programming Language for Future Interests 2022

while A is alive while B is alive to C

to A to B

(a) to A for life, then to B for life, then to C

while B is alive to C

to B

(b) A dies

to C

(c) B dies

Figure 16: Updating a title tree

from the title tree. A while node that is in the present—at the left
of the title tree–terminates when its condition becomes false, along
with any nodes beneath it. Figure 16 shows what happens to the title
tree in Figure 14 at A’s death. The condition “A is alive” in the left
while node becomes false, so that node—and A’s interest beneath
it—disappears. Possession passes to the right, ending up with the
newly leftmost interest: B’s life estate. If B then dies, the same thing
happens again and C takes possession. In an Orlando title tree, a
while node is not just a static description of the duration of an interest.
It also responds dynamically to events.

There are two more types of node to introduce. One is needed
for conditions precedent, such as in the conveyance to A for life,
then if B is married to B for life, then to C. The other does
some useful bookkeeping and plays an important role in the formal
version of title trees. Both are illustrated in Figure 17. The while and
to at the left are familiar, as is the to at the right. The new parts are
in the middle.

• The if represents the branching possibilites at A’s death. If the con-
dition B is married is true when possession reaches the if node, then
possession passes immediately to the node on the “yes’ branch: the
while in B’s life estate. If the condition is false, possession instead
follows the “no” arrow, to . . .

Vol. 24 Yale Journal of Law & Technology 105

while A is alive if B is married ⊥no
to C

to A while B is alive

to B

yes

(a) to A for life, then if B is married to B for life, then to C

while B is alive to C

to B

(b) B is married when A dies

to C

(c) B is unmarried when A dies

Figure 17: An if node

• The ⊥ (pronounced “bottom”) on the “no” branch is a symbol used
in computer science theory to denote an absence, literally noth-
ing.81 In Orlando, it represents a term that has terminated, or one
that was never there to begin with. Here, it means that if B is un-
married at A’s death, possession should bypass B’s interest and go
immediately to C’s.

Again, we follow the convention that nodes in the “past” are elimi-
nated, which means that an if immediately disappears as soon as it is
reached. Its only job is to pass possession forward along one branch
or the other. The title trees corresponding to these two cases are il-
lustrated in the rest of Figure 17.

The English statement “the language to X and his heirs creates
a fee simple in X” is an informal description of the relationship be-
tween the language of a conveyance and the resulting interests. Fig-
ure 18 shows the correspondence informally. Each to node corre-

81 See Dana Scott & Christopher Strachey, Toward a Mathematical Semantics
for Computer Languages 23 (1971) (unpublished manuscript) (Oxford University
Computing Laboratory Technical Monograph PRG-6), https://home.cs.colorado.
edu/~bec/courses/csci5535/reading/PRG06.pdf (“The new element 𝑏𝑜𝑡 can be re-
garded as an ‘embodiment’ of the undefined.”).

https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf

106 A Programming Language for Future Interests 2022

to A for life, then to B for life, then to C and her heirs

(a) Conveyance

for life for life
then

to C and her heirs
then

to A to B

(b) Grammatical structure

while A is alive while B is alive to C

to A to B

(c) Title tree

Figure 18: Translation of a conveyance

sponds to an occurrence of to X in the conveyance; each while node
corresponds to an occurrence of for life; each horizontal line to
an occurrence of then. The essence of the programming-language
approach to estates and future interests is to formalize this mapping.

C. An Example

Orlando and Littleton can handle quite intricate conveyances.
For example, consider the conveyance To Lear for life, then if
Goneril survives Regan to Goneril for life, otherwise to Regan,
then to Cordelia and her heirs, which creates four interests. Lear
has a possessory life estate, then Regan and Goneril have mutually
exclusive remainders, and finally Cordelia has a remainder.

Orlando and Littleton represent this state of title using a title
tree with four nodes corresponding to interests. This title tree are
is depicted in the top diagrams of Figures 19 (Orlando) and 20 (Lit-
tleton). The Orlando diagram is abstract; it is a formal, mathemati-
cal representation of the present and future interests in this property.
The Littleton diagram is concrete; it is the output of our actual com-
puter program to help users visualize future interests. The Orlando
representation is skeletal; it contains the bare minimum needed to de-
scribe the state of title. The Littleton visualization is more verbose;
it includes such details as that Goneril’s remainder is in life estate

Vol. 24 Yale Journal of Law & Technology 107

while L is alive if G survives R to R
no

to C

to L while G is alive

to G

yes

(a) To Lear for life, then if Goneril survives Regan to Goneril
for life, otherwise to Regan, then to Cordelia and her heirs.

while L is alive while G is alive to C

to L to G

(b) Regan dies.

while G is alive to C

to G

(c) Lear dies.

to C

(d) Goneril dies.

Figure 19: A more complicated example of successive and alterna-
tive interests (Orlando)

whereas Regan’s is in fee simple, and that all three remainders are
contingent.

A professor teaching this example might test their students’ un-
derstanding by asking, ”What happens if Regan dies?” As the second
diagrams in Figures 19 and 20 show, this event has three important
effects. First, Regan’s interest needs to be struck because its condi-
tion precedent (that Goneril not survive Regan) has definitively failed.
Second, although Goneril’s remainder is still a future interest, it be-
comes vested rather than contingent because its condition precedent
(that Goneril survive Regan) has been satisfied. Third, Cordelia’s
remainder is now also vested because the contingency that could pre-

108 A Programming Language for Future Interests 2022

Figure 20: A more complicated example of successive and alterna-
tive interests (Littleton)

Vol. 24 Yale Journal of Law & Technology 109

vent it from becoming possessory (Regan surviving Goneril) is now
impossible.

At this point, the consequences of further events are readily pre-
dictable. At Lear’s death, Goneril’s remainder becomes possessory
() and at Goneril’s death, Cordelia’s remainder becomes possessory.
As the third and fourth diagrams in Figures 19 and 20 show, Orlando
and Littleton capture every one of these changes. Orlando’s formal-
ism provide the necessary framework for Littleton to correctly de-
scribe these changes.

III. The Formal Details

The informal description of Orlando in II had four moving parts:
(1) a conveyance like to A for life, then to B is (2) translated into
(3) a title tree, which is (4) updated in response to events. They
correspond to four fundamental theoretical tools in the design and
implementation of programming languages:
• A grammar that defines the syntax of a “program.” In Orlando, this

grammar resembles a subset of English, but with tightly restricted,
formally specified syntax.82

• An abstract data type that models the current state of a program
as it executes. In Orlando, this data type is a title tree, which is
specified by another grammar that describes the contents of title
trees.

• A translation function that specifies how to turn a conveyance into
a title tree that describes the interests that conveyance creates. In
Orlando, this translation function consists of a set of rules, each of
which translates a small portion of a conveyance into a correspond-
ing portion of a title tree.

• An operational semantics that specifies how a program is executed,
step by step.83 In Orlando, the operational semantics consists of

82 Orlando uses a context-free grammar, in which there are no long-distance in-
terdependencies between different parts of an expreession. See generally MICHAEL
SIPSER, INTRODUCTION TO THE THEORY OF COMPUTATION (3d ed. 2012) (describing
context-free grammars).
83 See generally GLYNN WINSKEL, THE FORMAL SEMANTICS OF PROGRAMMING
LANGUAGES: AN INTRODUCTION (1993); HANS HÜTTEL, TRANSITIONS AND TREES:
AN INTRODUCTION TO STRUCTURAL OPERATIONAL SEMANTICS (2010). In Property
Conveyances, supra note 7, we also presented a denotational semantics for Orlando
and proved that its operational and denotational semantics are equivalent. The

110 A Programming Language for Future Interests 2022

update rules that describe how a title tree changes in response to
events.

This Section presents these four ideas, in detail but not quite in this
order.

The formal presentation of Orlando follows some standard con-
ventions from computer science. First, certain keywords—like to
and heirs—have specifically defined roles in Orlando.84 For exam-
ple, heirs is part of the standard phrase and her heirs used to create
a fee simple. It is common for programming languages to have a
few dozen reserved keywords—“reserved” in the same sense that a
statutory section number is reserved and should not be used for some-
thing else. You can name your bardcore band “Adam And His Heirs”
if you want, but using Adam and his heirs as the name of a person in
an Orlando program is a good way to confuse Littleton and yourself.
Littleton recognizes and responds to specific keywords, but it has no
deeper understanding of their connotations. It responds to and her
heirs and and the heirs of his body, but not the heir of all the
ages.

Next, the equations that define Orlando will frequently use vari-
ables like person and 𝑡1. Each variable has a specific type, e.g. person
always refers to a person’s name, 𝑡 always refers to a title tree, and so
on. So whenever the variable person appears in a definition it can be
filled in with the name of an arbitrary person. The names of variables
that represent expressions in Orlando, like a complete conveyance or
a limitation on a grant, will be the name of the kind of thing they rep-
resent. The names of variables that represent parts of title trees will
be individual letters, like 𝑐 for “condition”. By convention, having
introduced a variable like 𝑐, we can also put subscripts on it. Thus 𝑐1,
𝑐2, 𝑐3, and so on all refer to conditions—possibly different conditions,
possibly the same one.

The full set of rules that define the core subset of Orlando are
collected in the Appendix.

denotational formulation is more convenient for proving certain types of proposi-
tions about the behavior of programs. See generally WINSKEL, supra; DAVID A.
SCHMIDT, DENOTATIONAL SEMANTICS: A METHODOLOGY FOR LANGUAGE DEVEL-
OPMENT (1986).
84 Keywords are written in the monospaced typeface used for the literal language
of a conveyance.

Vol. 24 Yale Journal of Law & Technology 111

A. Title Trees

Title trees and conveyances in Orlando are terms in formal lan-
guages. Unlike a natural language, which is whatever people speak
to each other, the syntax and semantics of a formal language are pre-
cisely specified by a grammar. Like the grammar for a natural lan-
guage, it spells out how the pieces of one fit together, how larger
units are made up of smaller ones, and what counts as a valid ex-
pression. The difference is that while natural-language grammar is
flexible and context-dependent, a formal-language grammar is rigid
and rigorous. These rules are constitutive; any expression allowed by
them is meaningful in Orlando, while all other expressions are offi-
cially meaningless. The rules are symbolic; they describe Orlando’s
syntax using mathematical and logical notation. And the rules are
recursive; they show how to build up more complicated expressions
from simpler ones.

II described informally five types of title tree nodes. More for-
mally, they are defined by a grammar with five rules:

𝑡 ⇒ to 𝑝
𝑡 ⇒ ⊥
𝑡 ⇒ 𝑡1 while 𝑐
𝑡 ⇒ if 𝑐 then 𝑡1 else 𝑡2
𝑡 ⇒ 𝑡1→𝑡2

Read the symbol ⇒ as “can consist of.” Each line describes a dif-
ferent one of the title tree node types. Thus, a title tree can consist
of

1. the keyword to and a person 𝑝 (an interest),

2. the symbol ⊥ by itself (nothing),

3. the symbol while linking a smaller title tree 𝑡1 and a condition 𝑐
(a temporal limit),

4. the symbols if, then, and else linking a condition 𝑐 and two smaller
title trees 𝑡1 and 𝑡2 (a choice between two mutually exclusive pos-
sibilities), or

5. the symbol → linking two smaller title trees 𝑡1 and 𝑡2 (a sequential
division of ownership across time).

112 A Programming Language for Future Interests 2022

There are two important types here. Title trees themselves are de-
noted with the letter 𝑡 (and the usual optional subscript).85 Condi-
tions, written with the letter 𝑐, are statements about the world be-
ing modeled that can be true or false. A logician would say that
conditions are predicates; a mathematician would say that they are
Boolean-valued functions. So far, we have seen two: “𝑝 is alive” and
“𝑝 is married”.86

These rules are obviously recursive. The third rule, for example,
says that a if a title tree 𝑡 consists of a while node, then it contains
another title tree 𝑡1. That title tree, in turn, must be one of the five
types. If it is a to or a ⊥, then the recursion ends, because neither
of these rules has another title tree on the right hand side. But if it
is another while, the recursion continues: this new title tree must be
expanded until every subtree has bottomed out with a to or a ⊥. For
example, here is the derivation of the title tree from Figure 13, which
depicts a life estate followed by a remainder:

𝑡 ⇒ 𝑡1→𝑡2
⇒ 𝑡1→ to 𝑝
⇒ 𝑡1→ to B

⇒ (𝑡3 while A is alive)→ to B

⇒ (to 𝑝 while A is alive)→ to B

⇒ (to A while A is alive)→ to B

These symbolic description of title trees may not look much
like the diagrams from II. But there is a straightforward, one-to-one
correspondence between the textual and graphical depictions of title
trees. Figure 21 shows the corresponding fragment of a title-tree
diagram for each of the title-tree rules. To form a complete title tree,
just glue together the appropriate pieces.

The visual description and the symbolic one are two different
flavors of concrete syntax to describe the same abstract object, just
like a graph and the equation 𝑦 = 3𝑥+4 are two different descriptions
of the same line. The advantage of the visual version is that it is easier
for people to grasp. The advantage of the symbolic version is that it is

85 Title trees are an example of an algebraic data type. See generally BENJAMIN
C. PIERCE, TYPES AND PROGRAMMING LANGUAGES (2002) (thorough presentation
of type theory).
86 Conditions are written in an ordinary serif typeface, to distinguish them from
the words describing a condition in an Orlando program, which are written in a
monospaced terminal font.

Vol. 24 Yale Journal of Law & Technology 113

to 𝑝
(a) to 𝑝

⊥
(b) ⊥

while 𝑐

𝑡1
(c) 𝑡1 while 𝑐

𝑡1 𝑡2
(d) 𝑡1→𝑡2

if 𝑐 𝑡1
yes

𝑡2

no

(e) if 𝑐 then 𝑡1 else 𝑡2
Figure 21: Graphical representation of title trees

easier to specify precisely how to carry out formal mathematical op-
erations on. To be clear, the diagrams are not just heuristic sketches;
they are well-defined representations of well-defined mathematical
objects, and can be freely converted to and from the symbolic repre-
sentation. Littleton uses the symbolic version internally and displays
diagrams to users. This Article will continue to use both.

A title tree represents the state of title at a single moment in
time. It incorporates all of the information needed to keep track of
who owns what, and who will own what in the future. If you have a
title tree, you can discard the conveyance that generated it; the title
tree captures everything you need to know. As events occur, the title
tree can be updated to keep track of how they affect the state of title—
at which point the new title tree will capture everything relevant and
the old one can be discarded.

B. Semantics

So far, a title tree is just an abstract data structure. We have been
saying informally that the leftmost to node represents a possessory
interest, and that other to nodes represent interests that can become
possessory in response to events. Just as we formalized the intuitive
description of the structure of title trees, we can also formalize the
intuitive description of how they behave in response to events. This
provides an operational semantics for the formal language of title
trees.87

87 The particular style of operational semantics we use is a derivative seman-
tics. See Janusz A. Brzozowski, Derivatives of Regular Expressions, 11 J. ASS’N
FOR COMPUTING MACHINERY 481 (1964) (defining derivative semantics). For a
fuller treatment of the formalisms as used in Orlando see Property Conveyances,
supra note 7. For general introductions to the theory of languages and automata,
on which the derivative semantics draws, see SIPSER, supra note 82; DEXTER C.
KOZEN, AUTOMATA AND COMPUTABILITY (1997); HARRY R. LEWIS & CHRISTOS

114 A Programming Language for Future Interests 2022

Orlando models the changes to a title tree over time with the
concept of events: discrete occurrences such as A dies, 5 years pass,
and Mars becomes a state. A sequence of zero or more events is a
history, e.g.:

B dies .
Mars becomes a state .
The property is used as a school .

The actual mechanics of updating a title tree in response to events
are handled by an update function 𝛿() (named because it computes
the “delta” or change in the state of the title). To update a title tree 𝑡
in response to an event, replace it with 𝛿(𝑡).88

The basic idea of 𝛿() is that the special value ⊥ represents a por-
tion of a title tree that has completely terminated. All of the interests
it describes have ended. All it can do is pass possession onwards
to the next interest ready to receive it. 𝛿() identifies interests that
have terminated, replaces them with ⊥, and then deletes the ⊥s from
the title tree, pushing possession forward to the interests that follow
them. while and if nodes do the terminating; → arrows do the push-
ing forward. (to nodes never terminate on their own; they can only
be terminated by nodes above them in the tree.)

In particular, 𝛿() is computed—and only computed—on the left-
most branch of a title tree. That is the branch leading to the currently
possessory interest, and that is where the state of title could actually
change.

The actual value of 𝛿() is an example of definition by cases.
Since a title tree 𝑡 could take one of five forms, 𝛿(𝑡) must be defined
for each of those forms. So there is a line in the definition correspond-
ing to each of the rules in the grammar for title trees. The definitions
here are the heart of Orlando, so it is worth going through them care-
fully.

𝛿(to 𝑝) = to 𝑝
A to by itself represents a fee simple, which cannot be affected by
events because it is always possessory. Other nodes can limit a to
and cause it to terminate, but the to itself is unaffected. Thus 𝛿()
H. PAPADIMITRIOU, ELEMENTS OF THE THEORY OF COMPUTATION (2d ed. 1997). A
few papers have applied operational semantics to legal topics. See da Rocha Costa,
supra note 25; Azzopardi, Pace, Schapachnik & Schneider, supra note 32.
88 The event itself is not formally a parameter of 𝛿(). That is because 𝛿() must be
interleaved with a function that updates the state of conditions in a title tree. See
Property Conveyances, supra note 7 for the details.

Vol. 24 Yale Journal of Law & Technology 115

to 𝑝 ⇒ to 𝑝

(a) Updating a to

⊥ ⇒ ⊥
(b) Updating a ⊥

⊥ 𝑡2 ⇒ 𝛿(𝑡2)

(c) Updating a →

while false

𝛿(𝑡1)
⇒ ⊥

while 𝑐

⊥
⇒ ⊥

(d) Updating a while node

if true 𝑡1
yes

𝑡2

no ⇒ 𝑡1

if false 𝑡1
yes

𝑡2
no ⇒ 𝑡2

(e) Updating an if node

Figure 22: Update rules

leaves it unchanged. Figure 22a illustrates.
𝛿(⊥) = ⊥

A ⊥ represents the opposite of a fee simple: a node that cannot be
affected by events because it is never possessory. Other nodes cannot
revive it. Thus it too is unchanged by 𝛿(). Figure 22b illustrates.

There are two possibilities for 𝑡1→𝑡2, which are illustrated in
Figure 22c.

if 𝛿(𝑡1) = ⊥ then 𝛿(𝑡1→𝑡2) = 𝛿(𝑡2)
On the one hand, it might be the case that the first half of the →, has
terminated, i.e., that 𝛿(𝑡1) = ⊥. If so, then possession should pass to
the second half. In this case, the → itself is removed, leaving only
the right-hand subtree 𝑡2, which itself will now need to be updated to
𝛿(𝑡2).

if 𝛿(𝑡1) ≠ ⊥ then 𝛿(𝑡1→𝑡2) = 𝛿(𝑡1)→ 𝑡2

116 A Programming Language for Future Interests 2022

On the other hand, if the left subtree still exists, the → remains. In
this case, the left subtree 𝑡1 should be updated, but the right subtree 𝑡2
should not. Only currently possessory interests need to be checked
for termination by 𝛿(), and the right subtree has no such interests
(they are all in the future).

The subcases forwhile and if are similar. Awhile terminates (i.e.
is replaced with ⊥) either if its associated condition has become false,
or if the subtree beneath it has terminated. Otherwise, the subtree
updates in place and the while remains. A if node is always removed
when it is evaluated with 𝛿(). If the condition is true, the if is replaced
with its first subtree (the “yes” branch), but if the condition is false,
the if is replaced with its second subtree (the “no” branch).

These definitions capture formally the idea of interests termi-
nating in response to events and possession passing to subsequent
interests. They may seem abstract, but that is what makes them so
convenient to compute with. The formal definition of 𝛿() can be ap-
plied mechanically in a way that natural-linguistic descriptions of the
rules cannot.

A detailed example will show how the rules work together. Con-
sider the following sequence of events:

O conveys to A for life , then if B is
married to B for life , then to C .

B marries .
A dies .
B dies .

First, consider this symbolically. The conveyance in the first
line translates into the following title tree:

(to A while A is alive) →
(if B is married then (to B while B is alive) else⊥) →
to C

A’s interest is possessory. The condition A is alive is true, so therefore
𝛿(to A) = to A, which does not equal ⊥. Thus, the while A is alive at
the left does not simplifiy, i.e., the title tree does not immediately
terminate A’s interest.

Next, B marries. This does not change the truth of the condition
A is alive or terminate to A, so the tree does not change. The truth
of the condition B is married in the if changes, as does the truth of
B is alive in the second while, but since they are not currently at the
left, these changes are irrelevant for now. They will become relevant
as they reach the left of the title tree.

Vol. 24 Yale Journal of Law & Technology 117

while A is alive if B is married ⊥no
to C

to A while B is alive

to B

yes

(a) to A for life, then if B is married to B for life, then to C

⊥ if B is married ⊥no
to C

while B is alive

to B

yes

(b) A dies / while simplifies

if B is married ⊥no
to C

while B is alive

to B

yes

(c) → simplifies
while B is alive to C

to B

(d) if simplifies
⊥ to C

(e) B dies / while simplifies
to C

(f) → simplifies

Figure 23: An updating example

118 A Programming Language for Future Interests 2022

The real action starts when A dies. This does change the value
of the condition A is alive, which is now false. 𝛿(to A while A is alive)
evaluates to ⊥, so the overall title tree becomes:

⊥→(if B is married then (to 𝐵 while B is alive) else⊥)→ to C

The simplifications are not yet done. Now the rule for → kicks in,
because 𝛿(⊥→ , 𝑡2) = 𝛿(𝑡2). Thus, the first → should also be removed
from the tree, resulting in:

(if B is married then (to B while B is alive) else⊥)→ to C

But wait, there’s more! Now that the if is now leftmost, the condition
B is married must be checked. It is true, which means the if takes the
“yes” branch, because 𝛿(if true then 𝑡1 else 𝑡2) = 𝛿(𝑡1). The title tree
is now:

(to B while B is alive)→ to C

Now the (formerly second) while is at the left. But in this case, its
condition is true, as B is alive. Thus the title tree does not simplify
further.

Finally, B dies. This is a replay of the updates at A’s death. The
condition B is alive is now false, so 𝛿(to B while B is alive) = ⊥. Thus
the title tree becomes:

⊥→ to C

The remaining → drops out, just like the first one did, leaving:
to C

Thus, after A’s and B’s deaths, C’s interest is possessory.
These symbolic computations are not difficult, just tedious. But

these computations are not meant to be carried out by hand. That’s
what Littleton and other computer implementations are for. The point
of including them here is to show that there are no cards hidden up
our sleeves. Every step of the analysis can be made precise, explicit,
and mechanical.

What is useful to people is the visualization based on it. Fig-
ure 23 shows the same example, done visually rather than symboli-
cally.89

C. Conveyances

Orlando models conveyances themselves with another grammar.
Instead of generating an abstract data structure, as the title-tree gram-
89 The “yes” and ”no” branches in the if have been swapped for clarity, but the
semantics are the same whichever is drawn on top.

Vol. 24 Yale Journal of Law & Technology 119

mar does, the conveyance grammar generates something that looks
much more like natural language.

Title trees had one primary type 𝑡 , because every title tree can
be plugged into any title-tree-shaped hole. That’s not the case for
conveyances. The their grammatical and logical structure means that
there are conveyances whose parts make sense on their own but not
together, like to A and his heirs for life, but if to B while B is
married then to C. Instead, conveyances have a few distinct types:
• A conveyance like O conveys to A for life, then to B until
Mars becomes a state expresses a transfer from a grantor to various
recipients.

• A grant like to A and her heirs creates an interest. One of the most
striking things about the conveyance grammar is that individual
granting clauses like to B for life and combinations of granting
clauses like to C for life, then to D for life play the same
grammatical role.

• A quantum like for life or and his heirs describes what estate an
individual grant creates.

• A condition like B is married or A survives B expresses in words
a logical condition.

• A limitation like until Mars becomes a state or while B is married
uses a condition to terminate an interest.

• Finally, a conveyance can contain a person like Tilda, a pronoun
like her, or a natural number 𝑛 like 2 or 10.

The first rule in the conveyance grammar is the only one for
conveyances as a whole:

conveyance ⇒ owner conveys grant
It says that a conveyance consists of a person followed by the keyword
conveys followed by a grant. For example:

conveyance ⇒
person
⎴⎴⎴⎴⎴⎴⎴Owner conveys

grant
⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴to Alice

The first part is easy to fill in: person can be Owner or O or any valid
name. And conveys is always just itself.

But a grant is another and different conveyance. For now, con-
sider the first two:

grant ⇒ to person quantum
grant ⇒ grant then grant

120 A Programming Language for Future Interests 2022

The first option says that a grant can consists of the keyword to
followed by a person and a quantum. In lawyers’ lingo, to person
is the “words of purchase” describing who receives the interest and
quantum the “words of limitation” describing what estate they re-
ceive. So to Alice and her heirs is a valid granting clause; so is to
B for life. For example:

grant ⇒ to

person
⎴⎴⎴⎴⎴⎴⎴Alice

quantum
⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴for life

This is not the only option for a grant, which could also consist of
two granting clauses, separated by the keyword then.90 For example:

grant ⇒
grant

⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴to Alice for life then

grant
⎴⎴⎴⎴⎴⎴⎴⎴to Bob

This option is the one that makes the grammar powerful enough to
write indefinitely long conveyances creating arbitrarily large num-
bers of interests. Because this rule could be applied recursively, one
of the two grants could itself consist of two grants, one or both of
which could consist of two more, and so on. Anywhere that a con-
veyance could contain a single granting clause, it could contain two,
three, four, or more of them.

Next consider the rules for a quantum, which specifies the dura-
tion of an interest.

quantum ⇒ and pronoun heirs
quantum ⇒ for life

These are familiar phrases. The language and . . . heirs specifies
a fee simple. The language for life specifies a life estate measured
by the life of the grantee.

While we are at it, we can also say a bit more about valid names
and pronouns.

person ⇒ O | A | B | C | … | Alice | Bob | …
pronoun ⇒ her | his | hir | their | zir | …

A person consists of any single-letter pseudonym like A, B, O, and so
on, or any given name like Alice, Bob Terwilliger, and many others.
Littleton allows a person to be one or more words, each of which

90 Littleton allows for optional commas between granting clauses, but for simplic-
ity they are not listed in the formal grammar for Orlando.

Vol. 24 Yale Journal of Law & Technology 121

begins with a capital letter.91 A pronoun can be any single word,
like her or zir.92

Like the title-tree grammar, the conveyance grammar gives a
procedure for generating valid expressions. Start with a variable
conveyance that represents an arbitrary conveyance. Now apply one
of the rules of the grammar to expand a variable. In this case, there is
only one variable and exactly one applicable rule, so that conveyance
expands to owner conveys grant. Now apply another rule to one
of the remaining variables, e.g. expand person into Owner, yielding
Owner conveys grant. Apply another rule to a variable, say expand-
ing grant into grant then grant. Repeat, replacing a variable in the
current conveyance by the right-hand-side of a rule applicable to it
as as needed, until there are no variables left to expand. Here is an
example, one that generates our by-now familiar friend: a life estate
followed by a remainder.

conveyance
⇒ person conveys grant
⇒ Owner conveys grant
⇒ Owner conveys grant then grant
⇒ Owner conveys to person quantum then grant
⇒ Owner conveys to Alice quantum then grant
⇒ Owner conveys to Alice for life then grant
⇒ Owner conveys to Alice for life then to person quantum
⇒ Owner conveys to Alice for life then to Bob quantum
⇒ Owner conveys to Alice for life then to Bob and his heirs

Littleton runs this process in reverse; it starts from the text of a
conveyance like the one in the last line and reconstructs the sequence
of rules that yielded it. This process, called parsing, tells Littleton
what the linguistic structure of a conveyance is, and how its parts fit
together.93

91 The specific set of valid names is not further defined here, since the details are
unimportant. All that matters is that Alice is always Alice, and that Alice and Bob
are distinct.
92 Cf. Sprowl, supra note 54, at 48–49 (describing a program that asks about a
testator’s and spouse’s preferred pronouns, but then discarding it in favor of one
that asks whether the testator is male and assigns pronouns “assuming, of course,
a heterosexual marriage”). We submit that Littleton’s is the better approach; it is
both more respectful and computationally simpler.
93 At an abstract level, Littleton does recursive descent parsing with backtracking.
It reads a conveyance from left to right, using a list of of Orlando’s grammar rules
to test out different ways of generating the conveyance’s language. Whenever its

122 A Programming Language for Future Interests 2022

D. Translation

The final piece of the formalization of Orlando is the conversion
from conveyances to title trees. This is carried out by a translation
function written using a new kind of notation:Jto A for lifeK𝑂 = to A while A is alive

The double (or “denotation”) brackets JK are computer-science no-
tation to indicate the meaning or translation of the expression that
appears between the brackets.94 They describe a function from con-
veyances to title trees.95 That is, the title tree fragment on the right
hand side of the = is the translation of the conveyance fragment on
the left hand side between the double brackets. (The subscript on the
brackets keeps track of information abut the context—in this case,
who the grantor is.)

current hypothesis is contradicted by the next part of the conveyance, it backs up
to the last point at which it had multiple options and tries the next available one
it has not previously tried. Littleton uses the MParser library for OCaml, which
is derived from the Parsec library for Haskell. See Daan Leijen & Erik Meijer,
Parsec: Direct Style Monadic Parser Combinators For The Real World (2001) (un-
published manuscript), https://www.microsoft.com/en-us/research/wp-content/
uploads/2016/02/parsec-paper-letter.pdf (describing Parsec); Graham Hutton &
Erik Meijer, Monadic Parser Combinators (1996) (unpublished manuscript) (Tech-
nical Report NOTTCS-TR-96-4, Department of Computer Science, University of
Nottingham) (describing approach taken by Parsec). See generally ALFRED V.
AHO, MONICA S. LAM, RAVI SETHI & JEFFREY D. ULLMAN, COMPILERS: PRINCI-
PLES, TECHNIQUES, AND TOOLS (2d ed. 2006) (overview of parsing); DICK GRUNE
& CERIEL J.H. JACOBS, PARSING TECHNIQUES: A PRACTICAL GUIDE (2007) (same,
in more detail).
94 The notation is required to deal with a nuance of quotation. Using denotation
brackets to describe a function indicates that keywords such as “for life” are to
be read literally when the function is computed, but variables such as “𝑝” are to
be replaced with their values. The symbol was chosen because it was available
on the typewriter the computer scientist Dana Scott was using at the time. Brian
Rabern, The History of the Use of ⟦.⟧-Notation in Natural Language Semantics, 9
SEMANTICS & PRAGMATICS 12 (2016).
95 We omit the details of Littleton parses the string of characters describing a
conveyance to recognize which translation rules apply. The high-level version is
that it first translates the language of a conveyance into a abstract syntax tree (AST)
that describes which rules of the conveyance grammar were used to generate it.
The AST is to the text of a conveyance as the visual diagram of a title tree is to its
symbolic description. So to be more precise, the translation function is a function
from ASTs to title trees. See Property Conveyances, supra note 7 (documenting
Orlando ASTs and the translation function).

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf

Vol. 24 Yale Journal of Law & Technology 123

Just as the update function 𝛿() is defined by cases on the title
tree grammar, the translation function JK is defined by cases on the
conveyance grammar. Every rule in the conveyance grammar has
a corresponding translation rule. In this approach, which is known
as syntax-directed translation, there is exactly one translation rule
applicable for each syntactic option, so the translation is fully deter-
mined by the syntax of an expression.96 For example, here are the
grammar and translation rules for two successive granting clauses
linked by then.

grant ⇒ grant then grantJgrant1 then grant2K𝑜 = Jgrant1K𝑜 → Jgrant2K𝑜
Just as a grant is formed by recursively applying grammar rules, so
too is JgrantK recursively computed by recursively applying transla-
tion rules. And just as a grant can consist of grant then grant, when
it does, the value of Jgrant1 then grant2K is computed from Jgrant1K
and Jgrant2K. The translation of a conveyance just consists of ap-
plying JK to successively smaller portions of a conveyance, as in the
following example:Jto A for life, then to B and her heirsKO

= Jto A for lifeKO→ Jto B and her heirsKO
= Jto A A is aliveKO→ Jto B and her heirsKO
= (to A while A is alive)→ Jto B and her heirsKO
= (to A while A is alive)→ Jto B trueKO
= (to 𝐴 while A is alive)→ to B

The resulting title tree, shown in Figure 24, should look familiar.
This systematic dependence of the meaning of larger compound

expressions on the meanings of smaller and simpler subexpressions
contained within them is known as compositionality, and it is an
important part of what makes a programming-language approach so
fruitful.97

E. Conclusion

This completes the initial survey of Orlando. It is not a complete
presentation; indeed, it is not even a complete presentation of the

96 See AHO, LAM, SETHI & ULLMAN, supra note 93 (discussing syntax-directed
translation).
97 See Scott & Strachey, supra note 81, at 12; WINSKEL, supra note 83, at 60. See
generally Zoltán Gendler Szabó, Compositionality, STAN. ENCYCLOPEDIA PHIL.
(2020), https://plato.stanford.edu/archives/fall2020/entries/compositionality/.

https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/

124 A Programming Language for Future Interests 2022

while A is alive to B

to A

Figure 24: Translation of a conveyance

fragment of core Orlando documented in the Appendix. Instead, it
is meant to give a clear sense of what Orlando does and how it does
it. The rest is, more or less, more of the same.

How much more? The core subset of Orlando in the Appendix
also includes rules to generate and process special limitations (e.g.,
to A until A marries), executory limitations (e.g., to A, but if B
graduates college to B), conditions subsequent (e.g., to A, but if
the property is used as a school the grantor may reenter), implied
reversions (e.g., as in O conveys to A for life), and successive
conveyances, (e.g., O conveys to A for life, then to B. A conveys to
C.). The full version of Orlando as implemented in Littleton handles
far more, including:
• Estates for a term of years and in fee tail, including disentailment

by conveyance of a fee simple.
• Simplification, which removes unreachable interests from the title

tree so that it more closely reflects the state of title as a lawyer
would describe it.

• Naming of interests (e.g., “remainder in fee simple subject to ex-
ecutory limitation”).

• Vesting and the Rule Against Perpetuities.
• Miscellaneous doctrines, such as the Rule in Shelley’s Case, the

Doctrine of Worthier Title, and merger.
• Concurrent interests as tenancies in common, joint tenancies, and

tenancies by the entireties.
• Wills, intestacy, and escheat.98

• Class gifts (e.g., to the children of A), vesting subject to open,
and the rule of convenience.

98 See Lilian Edwards, Building an Intestate Succession Advisor: Compartmen-
talisation and Creativity in Decision Support Systems, in INFORMATICS AND THE
FOUNDATIONS OF LEGAL REASONING 311 (Zenon Bankowski, Ian White, & Ulrike
Hahn ed., 1995) (describing expert system for Scots intestacy law).

Vol. 24 Yale Journal of Law & Technology 125

The fragment discussed in this Part is just the tip of the iceberg. But
it is made of the same frozen H2O as the rest; if you understand how
Orlando and Littleton model a life estate, you understand how it is
possible for them to model everything else.

IV. Lessons for Property Law

Why teach future interests to a computer?, you may be wonder-
ing. Hasn’t the poor thing suffered enough already?

Most obviously, we hope that Orlando and Littleton will help
property scholars better understand the doctrinal rules of future in-
terests. Orlando’s rules are precise and concise; they make it easy to
see how a special limitation differs from an executory limitation, a
reversion from a possibility of reverter. Whether they read Orlando’s
rules or simply use Littleton to analyze conveyances, scholars may
see a familiar subject in fresh ways. Future interests are the right
hybrid of simple and complex to be illuminated by formalization.99

We also hope that Littleton will be useful as a teaching tool.100

Teachers can generate expository diagrams in seconds and walk their
students through the consequences of various contingencies. Some
people are visual learners; having a good, consistent, visualization
tool will help them understand how future interests fit together. In
particular, because Littleton is interactive, it enables students to learn
through self-directed exploration. The student wondering What hap-
pens if A dies? can type A dies and find out. Teachers and students
can use Littleton without even knowing that Orlando exists.101

More profoundly, the fact that future interests can be formalized
as a programming language provides deeper insights into property
theory. For example, the fact that Orlando uses only a small and
carefully defined set of title-tree node types validates the idea that
property law follows the numerus clausus principle—that property
interests come only in a set of specific predefined forms. This Part
considers what Orlando has to say to Property scholars. It explains
the design philosophy behind Orlando and Littleton, describes how
they can illuminate specific property doctrines, and and discusses the
broader systemic insights they offers into property-law theory.
99 See TAXMAN, supra note 20, at 842–43.

100 On teaching AI and law, see Kevin D. Ashley, Teaching Law and Digital Age
Legal Practice with an AI and Law Seminar, 88 CHI.-KENT L. REV. 783 (2012).
101 For more interesting recent work on generating teaching problems automati-
cally, see Lawsky Practice Problems, supra note 77.

126 A Programming Language for Future Interests 2022

A. Design Principles

Before discussing what Orlando and Littleton have to say about
property law, it will be helpful to say a bit about why they are the
way they are.

1. Orlando

Orlando title trees have a number of overlapping design prin-
ciples. First, they are minimal. The core language of title trees is
as small as possible. This makes it easier to get the semantics right.
Compared with the dozens of distinct interests possible under the tra-
ditional naming system, a core set of five title-tree node types is clean
and easy to reason about.

Relatedly, the semantics of title trees are simple. The update
function 𝛿() can be defined in a handful of lines. It is also easy to
define functions on title trees (like the path analyses of reachability
and vesting) and be confident that they are correct. Simplicity makes
it easier to teach how Orlando works, and easier to create implemen-
tations like Littleton.

The core title-tree node types are also orthogonal.102 Each
node type implements a different concept: it does one thing and one
thing only. A to node represents ownership, and ⊥ represents its ab-
sence. A while represents termination: events can cause an interest
to come to an end. An if represents choice: either A or B but not
both. And a → represents sequencing: A follows B, in that order.
They are good primitives because they don’t mix concepts: a while
node terminates without having to worry about what comes next.103

Simplicity and orthogonality help make title trees modular.104

The node types can be freely combined. 𝑡1 and 𝑡2 in 𝑡1→𝑡2 can be
anything; there are no hidden restrictions on what kinds of nodes can

102 See SEBESTA, supra note 16, at 9 (“Orthogonality in a programming language
means that a relatively small set of primitive constructs can be combined in a rel-
atively small number of ways to build the control and data structures of the lan-
guage.”).
103 An influential article on building languages out of orthogonal primitives is
Peter J. Landin, The Next 700 Programming Languages, 9 COMM. ACM 157 (1966).
See also Guy L. Steele, Jr„ Growing a Language (1998) (unpublished manuscript),
http://www.cs.virginia.edu/~evans/cs655/readings/steele.pdf.
104 Some authors treat modularity as a part of orthogonality. See SEBESTA, supra
note 16, at 9 (“Furthermore, every possible combination of primitives is legal and
meaningful.”).

http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf

Vol. 24 Yale Journal of Law & Technology 127

appear in them. This means that title trees are loosely coupled; there
are no confusing or hard-to-model interactions between remote parts
of one. Functions like 𝛿() can treat subtrees as black boxes, without
needing to look inside at their details.

Despite this, title trees are expressive: they suffice to model a
wide variety of estates and future interests. A complicated property
concept like “fee simple subject to condition subsequent” can be bro-
ken down into a suitable combination of title tree nodes. Expressiv-
ity is a design constraint; orthogonality and modularity are ways of
achieving it despite minimality and simplicity.

And finally—and this is necessarily more subjective—title trees
are faithful to the property-law concepts they model. A title tree
bears a close resemblance to the conveyance it comes from—not
perfect, but close. The translation rules are also minimal, simple,
orthogonal, and modular. The translation of conveyances into title
trees respects their structure.

Taken all together, these properties describe an elusive notion
of elegance in programming-language design. An elegant language
is mathematically clean but also easy to use; it enables a programmer
to see at a glance how their code will work and what it will do.105

The theoretical core of programming-language theory—the “lambda
calculus” invented by logician Alonzo Church in the 1930s—has just
three primitive operations and its semantics has only one rule, but
it is expressive enough to model any program in any programming
language, and clean enough that computer scientists use it to explain
concepts to each other.106 Orlando’s title trees aren’t on that level of
exquisite elegance, but we have tried to make them as elegant as we
could.

105 On elegance in software, see generally BEAUTIFUL CODE (Andrew Oram &
Greg Wilson eds., 2007), and in particular Yukihiro Matsumoto, Treating Code as
an Essay (Nevin Thompson trans.), in id. at 477.
106 See generally H.P. BARENDREGT, THE LAMBDA CALCULUS (rev. ed. 1985) (en-
cyclopedic reference); Raul Rojas, A Tutorial Introduction to the Lambda Cal-
culus (2015) (unpublished manuscript), https://arxiv.org/abs/1503.09060 (gentle
technical introduction); RAYMOND SMULLYAN, TO MOCK A MOCKINGBIRD (1985)
(non-technical introduction via puzzles about songbirds); Alligator Eggs!, WOR-
RYDREAM, http://worrydream.com/AlligatorEggs/ (non-technical introduction via
cute drawings of alligators).

https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/

128 A Programming Language for Future Interests 2022

2. Littleton

Littleton is primarily implemented in about 3,000 lines of code
in the OCaml programming language.107 It is designed as a web
app; the user interface is a mixture of HTML, CSS, and JavaScript.
The back-end OCaml code is compiled to JavaScript, which means
that it runs entirely in the user’s browser. The official site at https://
conveyanc.es includes include three versions of Littleton: (1) a live
online version that anyone can use, (2) the complete source code for
anyone to copy and modify, and (3) a prebuilt version that anyone
can copy to their own server and run.

Compared with more familiar languages such as C, Python, and
Java, OCaml may seem like an unusual choice. Three features of
OCaml, however, make it particularly well-suited for writing DSL
interpreters like Littleton.

First, OCaml is functional.108 An OCaml program is not a se-
quence of steps to execute—do this, then do that. Instead, it consists
almost entirely of functions to be evaluated. All of the important
parts of Littleton are described and implemented as functions. This
leads to a close correspondence between the the functional defini-
tions of Orlando and their implementation in Littleton. The transla-
tion function and the update function are both functions in Littleton’s
source code. So are the functions that compute reachability and vest-
ing along paths, the function that derives a human-readable name
from an interest, and many more. Adding a new feature is generally
a matter of defining a new mathematical function and then translat-

107 See generally ANDREW W. APPEL, MODERN COMPILER IMPLEMENTATION IN ML
(1998) (describing the implementation of compilers and interpreters in the ML
language, form which OCaml is derived).
108 For introductions to functional programming languages and a functional ap-
proach to programming, see generally HAROLD ABELSON & GERALD JAY SUSSMAN
WITH JULIE SUSSMAN, STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS
(2d ed. 1996) (canonical); FRIEDMAN, DANIEL P & FELLEISEN, MATTHIAS, THE LIT-
TLE SCHEMER (4th ed. 1995) (gentle); MIRAN LIPOVACA, LEARN YOU A HASKELL
FOR GREAT GOOD!: A BEGINNER’S GUIDE (2011) (quirky); ALVIN ALEXANDER,
FUNCTIONAL PROGRAMMING, SIMPLIFIED (2017) (verbose). A classic manifesto
in favor of functional languages is John Backus, Can Programming Be Liberated
from the von Neumann Style? A Functional Style and Its Algebra of Programs, 21
COMM. ACM 613 (1978). McCarty’s TAXMAN was written partly in the func-
tional language LISP, from which OCaml derives. TAXMAN, supra note 20, at
850 n.54.

https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es

Vol. 24 Yale Journal of Law & Technology 129

let rec delta (t : term) : term =
match t with
| Bottom -> Bottom
| Atom i -> Atom i
| Seq (t1 , t2) ->

if delta t1 = Bottom then delta t2
else Seq (delta t1 , t2)

| If (c , t1 , t2) ->
if (C . eval c) then delta t1
else delta t2

| While (s ,c , expr1) ->
if (not (C . eval c)) || delta expr1

= Bottom then Bottom
else While (s , C . delta c , delta
expr1)

Figure 25: Definition of 𝛿() in Littleton source code

ing that function into OCaml code. This has helped immensely with
rapid prototyping of different possible approaches.

Second, OCaml is strongly typed. Data comes in many differ-
ent types. In Orlando, types include conditions, title trees, and con-
veyances. In other programming languages, types often include inte-
gers, strings, and lists. Some languages allow programmers to store
any kind of data in any variables and manipulate it freely. Sometimes,
this leads to type conflicts, where the programmer tries to combine
incompatible types of data, like trying to add the number 5 and the
string hello good sir, which can cause bugs and crashes. OCaml
checks the type of every variable and every piece of data when a
program is compiled, and produces an error then, rather than later
when the program is run. This means that many kinds of bugs are
caught and prevented early. Strong typing helped us be careful, for
example, to keep conveyances and title trees distinct. For programs
(like Littleton) that interpret other programs (like conveyances), this
strict separation between different types of data is quite helpful in
preventing subtle design mistakes.

Third, OCaml uses a powerful form of pattern-matching.109

For a kind of data—like a title tree—that comes only in one of a

109 See Minsky & Weeks, supra note 36 (explaining pattern-matching); see also
TAXMAN, supra note 20, at 855 (discussing use of pattern-matching in TAX-
MAN).

130 A Programming Language for Future Interests 2022

finite number of forms, OCaml lets programmers define functions
by cases on those forms. For example, the Orlando function 𝛿()
is defined by cases on a title tree. Compare its definition with the
OCaml code implementing it in Figure 25. This simply is the defi-
nition of 𝛿(), transposed into slightly different notation. Other core
parts of Littleton, like the translation and simplification code, are
similarly transparent. Again, this is particularly useful when writing
programming-language interpreters. It is easy to implement mathe-
matical semantic definitions and to confirm that the implementation
matches the definition. We took advantage of this simplicity to ex-
periment with dozens of different definitions on our way to the final
version of Orlando.

B. Insights into Property Doctrine

Formalization has a disciplining effect; it forces implementors
to be precise about the meaning and behaviour of constructions, and
this in turn helps users to be precise about what they intend. This sub-
section discusses three ways in which a formalized approach helps
clarify specific doctrinal rules.

1. Defaults

There are several linguistic subtleties associated with parsing
life estates. One of them is that a conveyance can create an interest
with no explicitly specified quantum. The words to A by themselves
are sufficient to give A an interest. So Orlando includes the grammar
rule:

quantum → 𝜖
which says that a quantum can consist of 𝜖, a standard computer-
science notation for the “empty string,” i.e. no characters, not even a
space. (𝜖 is to conveyances as ⊥ is to title trees.) The grammar uses
it as a placeholder to represent the default quantum that an interest
has when none is given.

But this begs the question: what is the default quantum? This
is one of the classic doctrinal gotchas taught to Property students.
Well into the 20th century, some courts held that a bare grant of the
form to A with no words explicitly describing the quantum of interest
being granted was held to effectively create a life estate.110 But over
110 See, e.g., Cole v. Steinlauf, 144 Conn. 629, 631–32 (1957). See generally
THOMAS F. BERGIN & PAUL G. HASKELL, PREFACE TO ESTATES IN LAND AND FU-

Vol. 24 Yale Journal of Law & Technology 131

Jand… heirsK𝑝 = trueJ𝜖K𝑝 = 𝑝 is aliveJfor lifeK𝑝 = 𝑝 is aliveJfor the life of 𝑞K𝑝 = 𝑞 is alive
(a) Default quantum (older rule)

Jand… heirsK𝑝 = trueJ𝜖K𝑝 = trueJfor lifeK𝑝 = 𝑝 is aliveJfor the life of 𝑞K𝑝 = 𝑞 is alive
(b) Default quantum (modern rule)

Figure 26: Two different translation rules

time that default flipped, and the modern rule is that it creates a fee
simple. 111

Orlando models this shift using two different translation rules.
Compare the two sets of translation rules in Figure 26. In the former,
which corresponds to the earlier doctrine, the language to A creates
a life estate, just like to A for life does. In the latter, which corre-
sponds to the modern doctrine, the language to A creates a fee simple,
just like to A and their heirs does. Neither definition is correct or
incorrect in the abstract; each of them is useful for modeling a differ-
ent set of legal rules. Formalization makes this doctrinal change over
time easy to see and easy to describe. Note that the two sets of rules
differ in exactly one line; this change is a nice example of modularity
in that it does not affect the rest of Orlando or of property law.

Concretely, Littleton implements both sets of translation rules
for a default quantum. The modern rule is enabled by default. But
a configuration setting in Littleton allows the user to toggle between
the earlier preference for a life estate and the modern preference for
a fee simple.

TURE INTERESTS at 24–27 (2nd ed. 1984) (discussing origin and construction of
”and his heirs” language).
111 See, e.g., Dennen v. Searle, 149 Conn. 126, 135–39 (1961) (discussing the
history of the default and overruling Cole).

132 A Programming Language for Future Interests 2022

while C does not marry to C

while A is alive to B

to A

(a) (to A for life, then to B), but if C marries to C

while A is alive while C does not marry to C

to A to B

(b) to A for life, then (to B, but if C marries to C)

Figure 27: Two alternative title trees

2. Syntactic Ambiguity

For another kind of ambiguity lurking beneath the surface of the
usual informal presentation of future interests, consider the grant

to A for life, then to B, but if C marries to C

If A dies and then C marries, it is clear that C’s interest should divest
B’s. But what if C marries while A is still alive? Is A or C entitled
to possession? Is A’s interest also subject to this executory limitation
in favor of C? This is a scope problem. The limitation could have
broad scope and apply to both A’s interest and B’s, i.e.:

(to A for life, then to B), but if C marries to C

or it could have narrow scope and apply only to B’s, i.e:
to A for life, then (to B, but if C marries to C)

The two diagrams in Figure 27 depict the two possibilities.
It is not the case that one of these diagrams is right and the other

is wrong. There are conveyances in which a broad scope is appro-
priate and intended; there are conveyances in which a narrow scope
is appropriate and intended. A language for modeling conveyances
should not force once choice or the other. It should support both, just
as it supports both fees simple and life estates.

Thus, the grammatical rule for executory limitations makes ex-
plicit which clauses are subject to them.

grant ⇒ grant1 but if condition grant2

Vol. 24 Yale Journal of Law & Technology 133

grant ⇒ grant then grant
grant ⇒ grant then (grant)
grant ⇒ grant then (grant but if condition grant)

(a) Narrow scope

grant ⇒ grant but if condition grant
grant ⇒ (grant) but if condition grant
grant ⇒ (grant then grant) but if condition grant

(b) Broad scope

Figure 28: Derivations with different scope

This rule looks like the then rule, and it seems like it adopts broad
scope: every interest before the executory limitation is subject to
it. But that is not quite what it says. Instead, whatever granting
clauses are generated by grant1 are subject to the executory limita-
tion condition. Consider the two derivations in Figures 28, in which
parentheses have been added between the two steps in the derivation.
The parentheses, like the parentheses in (10 ∗ 2) + 3 and 10 ∗ (2 + 3),
clarify which of two possible interpretations is correct. Note that in
the first derivation, with narrow scope, only one of the two interests
before the but if was generated from grant1 in this rule.

From a formal perspective, the scope ambiguity matters because
the semantics of but if are not associative. Compare the semantics
of then, which are associative. Consider the conveyance

to A for life, then to B for life, then to C

which can be understood as
to A for life, then (to B for life, then to C)

or as
(to A for life, then to B for life), then to C

In this case, the syntactic ambiguity does not matter and the resulting
title trees will be semantically equivalent. The keyword then and its
translation, operator →, are associative in the same way that addition
is: 2 + (3 + 4) = (2 + 3) + 4. It does not matter where the parenthe-
ses go. This is not an accident. The relationship “𝑥 comes before 𝑦”
is naturally captured by an associative operator, and the definition of
𝛿() has been carefully chosen so that it is associative: 𝑥 → (𝑦 → 𝑧) be-

134 A Programming Language for Future Interests 2022

haves identically to (𝑥 → 𝑦)→ 𝑧. But the relationship of one interest
divesting a previous one is not naturally associative, which produces
a recurring scope ambiguity, which Orlando deals with using explicit
parentheses.

3. “Theorems” of Property Law

Orlando’s definitions are mathematical. The are written using
the dialect of mathematical notation used by programming-languagee
theoriests, and they describe Orlando’s syntax and semantics in terms
of abstract mathematical structures. This isn’t just a notational con-
venience; it opens up new ways to reason about Orlando programs,
and thus about property law.

For example, consider the proposition that a fee simple is per-
petual. More precisely, after any possible sequence of events, the
owner of a fee simple will still hold a fee simple. Let us write this
out formally in mathematical notation. Let ℎ refer to a history: a se-
quence of events. And let Δℎ(𝑡) be the result of using 𝛿() to update
the title tree 𝑡 with the events in the history ℎ, one at a time.112 Then
the proposition that a fee simple is perpetual is the proposition that
the following equation holds for all possible histories ℎ:

Δℎ(to 𝑝) = to 𝑝
The proof is by mathematical induction: if the equation holds for the
history with no events and it holds on a history with 𝑛 + 1 events
whenever it holds on a history with 𝑛 events, then it holds for all
histories, regardless of how many events they contain.113

Start with the case where ℎ contains no events. ThenΔℎ(to 𝑝) =
to 𝑝 because the title tree does not need to be updated when there are
no events to update it with.

Now consider the case where ℎ contains 𝑛 + 1 events. Then
we can rewrite Δℎ(to 𝑝) as Δ𝑒(Δℎ′(to 𝑝)), where ℎ′ is the first 𝑛
events in ℎ and 𝑒 is the most recent event. I.e., first update the title
tree with ℎ′ and then update it with 𝑒. But we are allowed to as-
summe that Δℎ′(to 𝑝)) = to 𝑝, because ℎ′ has only 𝑛 events in it. So
Δ𝑒(Δℎ′(to 𝑝)) = Δ𝑒(to 𝑝). To update a title tree by a single event
𝑒, we evaluate 𝛿() on the tree after the event takes place. But by the
definition of 𝛿() for to nodes, 𝛿(to 𝑝) = to 𝑝 regardless of what 𝑒 is.

112 Δ() is the “capitalized” version of 𝛿(): it is 𝛿() applied to multiple events. For
the details of how Δℎ() is defined, see Property Conveyances, supra note 7.
113 See SIPSER, supra note 82, at 23 (explaining mathematical induction).

Vol. 24 Yale Journal of Law & Technology 135

Thus we have established
Δℎ(to 𝑝) = Δ𝑒(Δℎ′(to 𝑝)) = Δ𝑒(to 𝑝) = to 𝑝

which completes the proof that the equation holds where ℎ contains
𝑛 + 1 events.

This is a comparatively simple proof. Other proofs about pro-
gramming languages use more sophisticated forms of induction, other
types of semantics, and even computer assistance. In previous work
directed at computer scientists, we formalized four other “theorems”
of property law: that ownership is unambiguous; first in time, nemo
dat quod non habet; first in right; and conservation of estates.114

This is a novel way of thinking about familiar heuristics, which
gives old claims about property law a new kind of theoretical content.
These proofs do not mean that judges would find that a particular per-
son has a right to possession. Mathematical proofs do not establish
legal propositions.115 But they can help to show that Orlando is a
faithful model of property law. A legal proposition—a fee simple is
perpetual—can be given a precise formulation as a claim about the
behavior of an Orlando program, and that formulation can be proven
true given Orlando’s definitions. So we have rigorous assurance that
Orlando satisfies important desiderata of a model of property law.

More ambitiously, restating claims about doctrine in terms of
claims about formal programming-linguistic models can help clar-
ify the content of those claims and make the points of disagreement
among scholars more evident. The leading future-interests scholars
of the first half of the twentieth century conducted a lengthy debate
that can charitably be described as Scholastic over how to classify the
interest held by the residuary devisee of a will to A for life, then
to those of A's children who survive A.116 The issue might have
been joined more clearly and conclusively if they had made their ar-
guments with dueling semantics that reduced their various positions
to a common (programming) language.

C. Insights into Property Theory

Orlando holds a mirror up to the common-law system of estates
and future interests. Some things are easier to see from another angle.
114 See Property Conveyances, supra note 7.
115 See TAXMAN, supra note 20, at 841.
116 See Wythe Holt, The Testator Who Gave Away Less Than All He or She Had:
Perversions in the Law of Future Interests, 32 ALA. L. REV. 69, 84 (1980) (review-
ing and criticizing their answers, and proposing that it be called a “perversion”).

136 A Programming Language for Future Interests 2022

Modeling conveyances as a programming language helps to explain
property law. In particular, three features of property law noted by
Thomas W. Merrill and Henry E. Smith are thrown into sharp relief.

1. The Numerus Clausus

First, property law is famously subject to the numerus clausus
(Latin for “closed number”): interests in property can exist only in
a finite number of forms.117 Property lawyers and their clients must
work within the existing forms. Consider Johnson v. Whiton, where
Royal Whiton’s will purported to create an estate “to . . . Sarah A.
Whiton and her heirs on her father’s side.” As Oliver Wendell Holmes,
Jr. put it, “A man cannot create a new kind of inheritance. . . . [I]f the
words ‘on her father’s side’ do not effect the purpose intended, they
are to be rejected, leaving the estate a fee simple”118

Orlando embraces the numerus clausus with a vengeance. The
acceptable forms of conveyances are limited to those generated by Or-
lando’s conveyance grammar. Unless the language of a conveyance
can be fit into one of the allowable patterns, it is not valid Orlando
syntax, and Littleton will not attempt to interpret it. Similarly, the ac-
ceptable forms of interests are limited to those that can exist in a title
tree generated by its title-tree grammar. Here is the code in Littleton
that defines title trees:

type t =
| Bottom
| Atom of interest
| Seq of t * t
| While of source * c o ndition * t
| If of condition * t * t

In programming-language terms, this code defines the type of title
trees; it says that a title tree can have one of these five forms, and no

117 Thomas W. Merrill & Henry E. Smith, Optimal Standarization in the Law of
Property: the Numerus Clausus Principle, 110 YALE L.J. 1, 3 (2000) [hereinafter
Optimal Standardization]; see also Henry E. Smith, Standardization in Property
Law [hereinafter Standardization], in RESEARCH HANDBOOK ON THE ECONOMICS
OF PROPERTY LAW 148 (Kenneth Ayotte & Henry E. Smith eds., 2011); Christina
Mulligan, A Numerus Clausus Principle for Intellectual Property, 80 TENN. L. REV.
235, 237—42 (2012).
118 Johnson v. Whiton, 159 Mass. 424, 426 (1893).

Vol. 24 Yale Journal of Law & Technology 137

others. The numerus clausus, in other words, is a statement about
the types of property law.119

The restriction on allowable wording is a feature of program-
ming languages, not a feature of property law. A perfectly plausible
English-language conveyance like “I hereby convey to my beloved
nephew Geoffrey forever and ever, and to his heirs successors and
assigns, to have and to hold, free and clear, as their own property”
is not part of the fragment of conveyancing Orlando and Littleton
attempt to model. To be clear, lawyers and judges might recognize
this as creating a fee simple in Geoffrey, and one might attempt to
write a natural-language-processing system that could infer that this
language creates a fee simple. But that is not part of this project; we
have focused on the underlying legal structure, rather than all possi-
ble nuances of natural language.

In contrast, the restriction on allowable interests very much is a
feature of property law.120 Littleton never reports that a title tree cor-
responds to a new or unknown kind of interest; it can fit any possible
title tree into the finite framework of property law. There is no node
or combination of nodes that corresponds to Royal Whiton’s desire
to restrict Sarah Whiton’s interest to her heirs “on her father’s side.”
That Orlando and Littleton shoehorn every interest into the few forms
of title trees they recognizes is a feature, not a bug, because that is
how property law works.

Orlando also shows that the numerus clausus is far less restric-
tive than it seems. The forms of title trees are extraordinarily gen-
eral. An interest can be subjected to arbitrary conditions on how
it starts and ends, and interests can be combined in arbitrarily long
chains. The common-law catalog of allowable interests (herein of
“remainder in fee simple subject to executory limitation”) is mislead-
ing because it is a catalog of names. By modeling the functional
behavior of interests, rather than starting from their familiar names,
Orlando shows how it is to possible to work with great flexibility us-
ing only the basic elements provided by property law. Some kinds of
ownership—like Royal Whiton’s patriarchal folly—are still unrepre-
sentable. But more is possible within the common-law system than
it seems at first.

119 See generally PIERCE, supra note 85 (discussing type theory).
120 The reason for the numerus clausus principle is more disputed than its exis-
tence. Compare Optimal Standardization, supra note 117 (information costs), with
Chad J. Pomeroy, The Shape of Property, 44 SETON HALL L. REV. 797 (2014) (his-
torical evolution).

138 A Programming Language for Future Interests 2022

2. Recursivity

Merrill and Smith observe that the system of future interests is
recursive:

These rules can feed into themselves. For example, a fee
simple can be physically divided and divided yet again,
or a lessee can create a sublease and the sublessee a
(sub)sublease, etc.121

They note that recursivity is a feature of natural languages,122 and
in their casebook they observe that it is a feature of programming
languages as well.123 So it is with Orlando. The conveyance gram-
mar is recursive: a granting clause be expanded into pair of granting
clauses joined by then, and these granting clauses can be exapnded
again, and so on an indefinitely large number of times. And the title
tree grammar is recursive, too: every while, if, and → can be exap-
nded into any title tree. Correctly capturing the recursivity of future
interests was a key design principle for Orlando.

More than that, Orlando sheds light on how property law is re-
cursive. The legal language of conveyances is recursive in the same
way way that Orlando’s conveyance grammar is recursive: arbitrar-
ily long sequences of granting clauses can be strung together. And
the legal relations of future interests are recursive in the same way
that Orlando’s title trees are: title can be carved up into arbitrarily
large numbers of successive interests. Orlando shows that these two
kinds of recursivity are closely related, because its syntax-directed
translation of conveyances into title trees maps recursive rules of the
one into recursive rules of the other. Property law can accommo-
date recursively divided ownership, but the actual work of division
is done by property language, which partakes of natural language’s
recursivity. Orlando foregrounds and formalizes that relationship.

As Merrill and Smith point out, the analogy to natural language
breaks down because of the flexibility of natural language.124 But
this is precisely where a formal programming-linguistic treatment

121 Optimal Standardization, supra note 117, at 36–37; see also Henry E. Smith,
Property as the Law of Things, 125 HARV. L. REV. 1691, 1707–08 (2012) [here-
inafter Law of Things].
122 Optimal Standardization, supra note 117, at 36–37.
123 THOMAS W. MERRILL & HENRY E. SMITH, PROPERTY: PRINCIPLES AND POLICIES
529 (3rd ed. 2017).
124 Optimal Standardization, supra note 117, at 37–38.

Vol. 24 Yale Journal of Law & Technology 139

can be more faithful to the domain being modeled than the usual lin-
guistic characterizations lawyers trade in. Students who have spent
months learning to look for ambiguities in the language of a legal test
and to challenge the application of every rule are often frustrated to
encounter a legal domain with bright-line rules that leave little room
for argument. In this respect, the notorious inflexibility of computer
programming may be an accurate reflection of the law of future in-
terests.

3. Modularity

Smith has argued at length that private law in general and prop-
erty law in particular make extensive use of modularity to economize
on information costs.125 By decomposing legal relationships into
weakly coupled units, modularity makes it possible for actors to fo-
cus on the small number of modules that directly affect them, without
having to worry about the legal consequences of other more remote
modules.126 Where the numerus clausus emphasizes the standard-
ization of individual modules, modularity emphasizes the separabil-
ity of modules from each other. In property law, Smith focuses on
the way in which discrete and distinguishable “ legal things” mediate
property rights. Some of these things are pre-legal, socially defined
things like chairs, cars, and plots of land. Some of them are legally
distinguishable interests in the same thing, like a life estate and re-
mainder in the same plot of land.

Orlando emphasizes the modularity of property law by demon-
strating how loosely coupled the multiple interests in the same piece
of property truly are. The statement that a life estate must be followed
by a remainder or reversion expresses a non-modularity of future in-

125 See Law of Things, supra note 121; Standardization, supra note 117; Optimal
Standardization, supra note 117; Henry E. Smith, ModularIty in Contracts: Boil-
erplate and Information Flow, 104 MICH. L. REV. 1175 (2006). See generally
Christopher S. Yoo, Modularity Theory and Internet Regulation, 2016 U. ILL. L.
REV. 1 (detailed analytical breakdown of concept of modularity); BARBARA VAN
SCHEWICK, INTERNET ARCHITECTURE AND INNOVATION (2012) (precise discussion
of modularity); CARLISS Y. BALDWIN & KIM B. CLARK, DESIGN RULES: THE PWER
OF MODULARITY (2000) (locus classicus of modularity theory).
126 A related literature analyzes the modularity of the constituent elements of con-
tracts. See Smith, supra note 125; Gerding, supra note 30; Cathy Hwang, Unbun-
dled Bargains: Multi-Agreement Dealmaking in Complex Mergers and Acquisi-
tions, 164 U. PA. L. REV. 1403 (2015); Cathy Hwang & Matthew Jennejohn, Deal
Structure, 113 NW. U. L. REV. 279 (2018).

140 A Programming Language for Future Interests 2022

terests: distinct modules can interact only in certain ways. But Or-
lando’s title-tree node types are fully modular and orthogonal; they
are not so restricted. The rule about life estates and remainders is
a rule of how we talk about property interests, not a rule about how
property interests function.

The same is true of the conveyance grammar. If one starts from
the cumbersome common-law names, then tries to create them using
appropriate granting language while respecting the rules about what
can follow what, the result is a linguistic dumpster fire. But Orlando’s
conveyance grammar rules are simple and orthogonal; there are no
long-distance dependencies between different parts of a conveyance.
The only information that must be remembered during translation is
the identity of the grantor, for classifying interests as being retained
or non-retained, and for inserting implied reversions. The legal rules
for parsing conveyances are about as modular as anything expressed
by natural language can be; they have merely been obscured under ac-
cumulated layers of overly fussy description. Much of the confusion
about the workings of the system of estates and future interests arises
not because the substantive rules are complicated and arbitrary, but
because the naming rules are complicated and arbitrary.

For example, compare the conveyances (1) to A until B grad-
uates college, then to O, (2) to A until B graduates college,
then to B, and (3) to A, but if B graduates college to B. As
depicted in Figure 29, they generate structurally identical title trees.
The only thing that varies is who takes possession after B graduates,
and the specific language of the grant. And yet A’s fee simple is ”de-
terminable” in (1) because it is followed by an interest in the grantor,
and ”subject to an executory limitation” in (3) because it is followed
by an interest in a transferee. The Restatement complicates things
even further by insisting that A’s fee simple in (2) is ”with” an execu-
tory limitation because the limitation is stated in the grant creating
A’s interest, while it is ”subject to” an executory limitation in (3)
because the limitation is stated in a subsequent grant.127 There is
a useful terminological distinction between O’s reversion in (1) and
B’s executory interest in (2) and (3), as executory interests are subject
to the Rule Against Perpetuities and reversions are not. But there is
nothing useful to be gained by describing A’s functionally identical
interest three different ways depending on the context.

127 Compare RESTATEMENT (FIRST) OF PROP. § 46 (1936) [hereinafter RESTATE-
MENT (FIRST)] (”subject to”), with RESTATEMENT (FIRST), supra, § 47 (”with”).

Vol. 24 Yale Journal of Law & Technology 141

while B has not graduated to O

to A

(a) to A until B graduates college, then to O gives A a fee simple
determinable

while B has not graduated to B

to A

(b) to A until B graduates college, then to B gives A a fee simple
with executory limitation

while B has not graduated to B

to A

(c) to A, but if B graduates college to B gives A a fee simple
subject to executory limitation

Figure 29: One interest with three different names.

142 A Programming Language for Future Interests 2022

Conclusion

We have turned future interests into a programming language.
Or perhaps they were one already. One interpretation of the noto-
rious driness of the subject is that generations of courts and schol-
ars had distilled its doctrines into a nearly pure form, one closer to
logic than to experience. Since before the Restatement (First) was
published, reformers have been calling for a dramatic simplification
of the system of estates and future interests.128 Maybe the task is
smaller than it seems.

Future interests are just the start. Formalizing legal rules as a
programming language can clarify their conceptual structure in a way
that other approaches do not. Elegant algorithms are often not just
correct, but self-evidently correct, and the process of finding them
“adds a strong dose of precision and rigor” to legal analysis.129 Fresh
insights await as more parts of law are subjected to this new type of
scholarly scrutiny.

We believe that Orlando offers a firm theoretical foundation for
future research in formalizing property law. Orlando’s title trees
can easily be extended with new node types—for example, perhaps
with a common node to indicate concurrent ownership in a tenancy
in common—without requiring any changes to existing node types.
And Orlando’s conveyance grammar can easily be extended with new
rules to allow conveyances to create these new nodes. The following

128 Myres S. McDougal, Future Interests Restated: Tradition Versus Clarification
and Reform, 55 HARV. L. REV. 1077, 1115 (1941) (“To make a superb inventory
of Augean stables is not to cleanse them.”); J.J. Duleminier, Contingent Remain-
ders and Executory Interests: A Requiem for the Distinction, 43 MINN. L. REV. 13
(1958); William F. Fratcher, A Modest Proposal for Trimming the Claws of Legal
Future Interests, 21 DUKE L.J. 517 (1972); Lawrence W. Waggoner, Reformulating
the Structure of Estates: A Proposal for Legislative Action, 85 HARV. L. REV. 729
(1972); Gerald Korngold, For Unifying Servitudes and Defeasible Fees: Property
Law’s Functional Equivalents, 66 TEX. L. REV. 533 (1987); Thomas P. Gallanis,
The Future of Future Interests, 60 WASH. & LEE L. REV. 513 (2003); D. Benjamin
Barros, Toward a Model Law of Estates and Future Interests, 66 WASH. & LEE L.
REV. 3 (2009). In fairness, the Restatement (Third) made a start. See Lawrence W.
Waggoner, What’s in the Third and Final Volume of the New Restatement of Prop-
erty that Estate Planners Should Know About, 38 ACTEC L.J. 23 (2012). And
the Restatement (Fourth) is underway. See Thomas W. Merrill & Henry E. Smith,
Why Restate the Bundle? The Disintegration of the Restatement of Property, 78
BROOK. L. REV. 681 (2014).
129 TAXMAN, supra note 20, at 839.

Vol. 24 Yale Journal of Law & Technology 143

is just a partial list of topics that strike us as ripe for formalization in
an extension of Orlando:
• The feudal system that preceded the one Orlando currently formal-

izes, with moving parts like seisin, subinfeudation, homage, and
feudal incidents.

• Equitable interests, such as historical uses and modern trusts.
• Nonpossesory interests, such as easements, servitudes, and liens.
• Dower, curtesy, and spousal shares.
• Modern RAP reforms, such as wait-and-see.
• Priority among conflicting transfers and the effects of recording

acts.
• Involuntary transfers, such as adverse possession.

And formalizing property law is just one small corner of what
programming langauges have to offer. Legal scholars Paul Ohm and
Houman Shadab have argued that writing programs can be a form of
legal scholarship.130 Sometimes the best program for the job will be
an interpreter for a new legal programming language. Just as legal
scholars use the tools of critical race theory and economic theory
to illuminate law, they can use the tools of programming-language
theory too. Law and linguistics is an established subfield;131 law
and programming linguistics could be one, too. Most legal scholars
will not work with programming languages, but some of them should.
If they can learn to perform regressions and run collocation queries,
they can write context-free grammars and operational semantics.

To quote the computer scientist Donald Knuth, “Science is what
we understand well enough to explain to a computer. Art is every-
thing else we do.”132 For centuries, future interests have been an
arcane art. Now they are a science.

130 Ohm, supra note 49; Shadab, supra note 49.
131 See, e.g., Jill C. Anderson, Just Semantics: The Lost Readings of the Ameri-
cans with Disabilities Act, 117 YALE L.J. 992 (2007); Thomas R. Lee & Stephen
C. Mouritsen, Judging Ordinary Meaning, 127 YALE L.J. 788 (2017); BRIAN G.
SLOCUM, ORDINARY MEANING: A THEORY OF THE MOST FUNDAMENTAL PRINCIPLE
OF LEGAL INTERPRETATION (2015).
132 MARKO PETKOVS̆EK, HERBERT S. WILF & DORON ZEILBERGER, A=B vii (1997).

144 A Programming Language for Future Interests 2022

Orlando Reference

conveyance ⇒ owner conveys grant

grant ⇒ to person quantum
grant ⇒ grant limitation
grant ⇒ if condition grant
grant ⇒ if condition grant otherwise grant
grant ⇒ grant but if condition grant
grant ⇒ grant but if condition … reenter
grant ⇒ grant then grant
grant ⇒ (grant)

quantum ⇒ 𝜖
quantum ⇒ and pronoun heirs
quantum ⇒ and the heirs of pronoun body
quantum ⇒ for life
quantum ⇒ for the life of person
quantum ⇒ for 𝑛 years

limitation ⇒ while condition
limitation ⇒ until condition

person ⇒ O | A | B | C | … | Alice | Bob | …
pronoun ⇒ her | his | hir | their | zir | …

Figure 30: Conveyance grammar

Vol. 24 Yale Journal of Law & Technology 145

Jowner conveys grantK(𝑡) =
𝑡[(JgrantKowner → to owner) / to owner]

Jto person trueK𝑜 = to personJto person quantumK𝑜 = to person while JquantumKpersonJgrant limitationK𝑜 = JgrantK𝑜 while JlimitationKJif condition grantK𝑜 = if JconditionK then JgrantK𝑜 else⊥Jif condition grant1 otherwise grant2K𝑜 =
if JconditionK then Jgrant1K𝑜 else Jgrant2K𝑜Jgrant1 but if condition grant2K𝑜 =
((Jgrant1K𝑜 → to 𝑝) while JconditionK)→ Jgrant2K𝑜Jgrant but if condition … reenterK𝑜 =
(Jgrant1K𝑜 while JconditionK and 𝑜 does not reenter)→ to 𝑜Jgrant then grant2K𝑜 = Jgrant1K𝑜 → Jgrant2K𝑜J(grant)K𝑜 = JgrantK𝑜

J𝜖K𝑝 = trueJand … heirsK𝑝 = trueJand the heirs … bodyK𝑝 = 𝑝 has issueJfor lifeK𝑝 = 𝑝 is aliveJfor the life of 𝑞K𝑝 = 𝑞 is aliveJfor 𝑛 yearsK𝑝 = 𝑛 years have not yet passed

Jwhile conditionK = JconditionKJuntil conditionK = ¬JconditionK
Figure 31: Translation function

146 A Programming Language for Future Interests 2022

𝑡 ⇒ to 𝑝
𝑡 ⇒ ⊥
𝑡 ⇒ 𝑡1 while 𝑐
𝑡 ⇒ if 𝑐 then 𝑡1 else 𝑡2
𝑡 ⇒ 𝑡1→𝑡2

Figure 32: Title tree grammar

𝛿(to 𝑝) = to 𝑝
𝛿(⊥) = ⊥

𝛿(𝑡 while 𝑐) =
⎧
⎨
⎩

𝛿(𝑡) while 𝑐 if ⊧ 𝑐 and 𝛿(𝑡) ≠ ⊥
⊥ if ⊭ 𝑐
⊥ if 𝛿(𝑡) = ⊥

𝛿(if 𝑐 then 𝑡1 else 𝑡2) = {𝛿(𝑡1) if ⊧ 𝑐
𝛿(𝑡2) if ⊭ 𝑐

𝛿(𝑡1→𝑡2) = {𝛿(𝑡1)→ 𝑡2 if 𝛿(𝑡1) ≠ ⊥
𝛿(𝑡2) if 𝛿(𝑡1) = ⊥

Figure 33: Update function

	Introduction
	Programming Languages and Law
	Contract
	Tax
	Legal Drafting
	Visualization

	An Informal Overview
	Previous Work
	Orlando and Littleton
	An Example

	The Formal Details
	Title Trees
	Semantics
	Conveyances
	Translation
	Conclusion

	Lessons for Property Law
	Design Principles
	Orlando
	Littleton

	Insights into Property Doctrine
	Defaults
	Syntactic Ambiguity
	``Theorems'' of Property Law

	Insights into Property Theory
	The Numerus Clausus
	Recursivity
	Modularity

	Conclusion
	Appendix: Orlando Reference

